
TmVal Documentation
Release v0.0.11

Gene Dan, FCAS, MAAA, CSPA

Sep 20, 2020

CONTENTS

1 Introducing TmVal 3
1.1 Feature Highlights . 3
1.2 Amount and Accumulation Functions . 3
1.3 Interest Rate Conversions . 4
1.4 Equations of Value . 6
1.5 Annuities . 7
1.6 Amortization . 8
1.7 Bonds . 10
1.8 Term Structure . 11
1.9 Development Status . 11
1.10 Further Reading . 12

2 Installation and Quickstart 13
2.1 The easy way - pip . 13
2.2 From GitHub . 13
2.3 Troubleshooting . 13

3 Usage Tutorial 15
3.1 Growth . 15

3.1.1 Simple Interest . 15
3.1.2 Compound Interest . 16
3.1.3 Amount Functions . 17
3.1.4 Accumulation Functions . 18
3.1.5 Interest . 19
3.1.6 The Rate Class . 21
3.1.7 A Friendly Reminder . 23
3.1.8 Tiered Accounts . 24
3.1.9 Discount . 25
3.1.10 Interest-Discount Relationships . 26
3.1.11 Time Value of Money . 28
3.1.12 Nominal Interest . 29
3.1.13 Interest-Discount Rate Conversions . 31
3.1.14 Force of Interest . 32
3.1.15 The Rate Class, Revisited . 33
3.1.16 The Investment Year Method . 35

3.2 Value . 36
3.2.1 The Payments Class . 36
3.2.2 Net Present Value . 37
3.2.3 Equations of Value . 38
3.2.4 Equated Time . 39

i

3.2.5 Dollar-Weighted Yield . 39
3.2.6 Approximate Dollar-Weighted Yield Rate . 40
3.2.7 Time-Weighted Yield . 41

3.3 Annuities . 42
3.3.1 Annuities-Immediate . 42
3.3.2 Annuities-Due . 43
3.3.3 Perpetuities . 44
3.3.4 Deferred Annuities . 45
3.3.5 Nonlevel Annuities . 46
3.3.6 Nonlevel Annuities - Geometric Progression . 47
3.3.7 Nonlevel Annuities - Arithmetic Progression . 48
3.3.8 Perpetuities - Arithmetic Progression . 49
3.3.9 Nonintegral Terms . 49
3.3.10 General Accumulation Functions . 51

3.4 Loans . 52
3.4.1 Outstanding Loan Balance - Retrospective Method . 52
3.4.2 Outstanding Loan Balance - Prospective Method . 52

3.5 Bonds . 53
3.5.1 Zero-Coupon Bonds . 54
3.5.2 Coupon Bonds . 55
3.5.3 Nonlevel Coupons . 58
3.5.4 Bond Premium and Discount . 59
3.5.5 Makeham’s Formula . 60

3.6 Pandas Compatibility . 61

4 API Reference 63
4.1 General Functions . 63

4.1.1 tmval.simple_solver . 63
4.1.2 tmval.osi . 63
4.1.3 tmval.bankers_rule . 64
4.1.4 tmval.compound_solver . 64
4.1.5 tmval.k_solver . 64
4.1.6 tmval.interest_from_discount . 65
4.1.7 tmval.discount_from_interest . 65
4.1.8 tmval.effective_from_nominal_int . 65
4.1.9 tmval.effective_from_nominal_disc . 65
4.1.10 tmval.apy . 66
4.1.11 tmval.apr . 66
4.1.12 tmval.eff_int_from_eff_int . 66
4.1.13 tmval.nom_int_from_eff_int . 66
4.1.14 tmval.eff_disc_from_eff_int . 67
4.1.15 tmval.nom_disc_from_eff_int . 67
4.1.16 tmval.eff_int_from_eff_disc . 67
4.1.17 tmval.eff_disc_from_eff_disc . 68
4.1.18 tmval.nom_int_from_eff_disc . 68
4.1.19 tmval.nom_disc_from_eff_disc . 68
4.1.20 tmval.eff_int_from_nom_int . 69
4.1.21 tmval.nom_int_from_nom_int . 69
4.1.22 tmval.eff_disc_from_nom_int . 69
4.1.23 tmval.nom_disc_from_nom_int . 70
4.1.24 tmval.eff_int_from_nom_disc . 70
4.1.25 tmval.nom_int_from_nom_disc . 70
4.1.26 tmval.eff_disc_from_nom_disc . 71
4.1.27 tmval.nom_disc_from_nom_disc . 71

ii

4.1.28 tmval.get_loan_pmt . 71
4.1.29 tmval.get_loan_amt . 72
4.1.30 tmval.get_savings_pmt . 72
4.1.31 tmval.get_number_of_pmts . 73
4.1.32 tmval.olb_r . 73
4.1.33 tmval.olb_p . 73
4.1.34 tmval.get_perpetuity_gr . 74
4.1.35 tmval.get_perpetuity_pmt . 74
4.1.36 tmval.standardize_rate . 74
4.1.37 tmval.read_iym . 75
4.1.38 tmval.tt_iym . 75
4.1.39 tmval.standardize_acc . 75
4.1.40 tmval.simple_interval_solver . 76
4.1.41 tmval.pairwise . 76
4.1.42 tmval.time_weighted_yield . 76
4.1.43 tmval.parse_cgr . 77
4.1.44 tmval.rate_from_earned . 77
4.1.45 tmval.rate_from_intdisc . 78
4.1.46 tmval.amt_from_intdisc . 79
4.1.47 tmval.k_from_intdisc . 80

4.2 Amount . 80
4.2.1 tmval.Amount.val . 81
4.2.2 tmval.Amount.interest_earned . 81
4.2.3 tmval.Amount.effective_rate . 81
4.2.4 tmval.Amount.effective_interval . 81
4.2.5 tmval.Amount.discount_interval . 82
4.2.6 tmval.Amount.effective_discount . 82
4.2.7 tmval.Amount.get_accumulation . 82

4.3 Accumulation . 82
4.3.1 tmval.Accumulation.val . 83
4.3.2 tmval.Accumulation.discount_func . 83
4.3.3 tmval.Accumulation.future_principal . 83

4.4 TieredBal . 83
4.4.1 tmval.TieredBal.get_jump_times . 84

4.5 TieredTime . 84
4.6 SimpleLoan . 84
4.7 Annuity . 85

4.7.1 tmval.Annuity.pv . 86
4.7.2 tmval.Annuity.sv . 86
4.7.3 tmval.Annuity.get_r_pmt . 87
4.7.4 tmval.Annuity.get_drop . 87
4.7.5 tmval.Annuity.get_balloon . 87

4.8 Payments . 88
4.8.1 tmval.Payments.equated_time . 88
4.8.2 tmval.Payments.irr . 88
4.8.3 tmval.Payments.dw_approx . 89

4.9 Rate . 89
4.9.1 tmval.Rate.convert_rate . 90
4.9.2 tmval.Rate.amt_func . 91
4.9.3 tmval.Rate.acc_func . 91
4.9.4 tmval.Rate.standardize . 91

4.10 Bond . 92
4.10.1 tmval.Bond.get_coupon_times . 93
4.10.2 tmval.Bond.get_coupon_amt . 93

iii

4.10.3 tmval.Bond.get_redemption . 93
4.10.4 tmval.Bond.get_n_coupons . 93
4.10.5 tmval.Bond.get_coupons . 93
4.10.6 tmval.Bond.get_coupon_intervals . 94
4.10.7 tmval.Bond.makeham . 94
4.10.8 tmval.Bond.base_amount . 94
4.10.9 tmval.Bond.balance . 94
4.10.10 tmval.Bond.am_prem . 94
4.10.11 tmval.Bond.acc_disc . 95
4.10.12 tmval.Bond.am_interest . 95
4.10.13 tmval.Bond.amortization . 95
4.10.14 tmval.Bond.dirty . 95
4.10.15 tmval.Bond.clean . 96
4.10.16 tmval.Bond.accrued_interest . 96
4.10.17 tmval.Bond.yield_s . 96
4.10.18 tmval.Bond.yield_j . 97
4.10.19 tmval.Bond.sale_prem . 97
4.10.20 tmval.Bond.last_coupon_amt . 97
4.10.21 tmval.Bond.next_coupon_amt . 97
4.10.22 tmval.Bond.last_coupon_t . 98
4.10.23 tmval.Bond.next_coupon_t . 98
4.10.24 tmval.Bond.coupon_bound_t . 98
4.10.25 tmval.Bond.coupon_f . 98
4.10.26 tmval.Bond.adj_principal . 98
4.10.27 tmval.Bond.interest_on_accrued . 99
4.10.28 tmval.Bond.yield_c . 99
4.10.29 tmval.Bond.prior_coupons . 99
4.10.30 tmval.Bond.term_floor . 99

4.11 Loan . 100
4.11.1 tmval.Loan.get_payments . 100
4.11.2 tmval.Loan.olb_r . 101
4.11.3 tmval.Loan.olb_p . 101
4.11.4 tmval.Loan.principal_paid . 101
4.11.5 tmval.Loan.total_payments . 102
4.11.6 tmval.Loan.interest_paid . 102
4.11.7 tmval.Loan.principal_val . 102
4.11.8 tmval.Loan.amortization . 102
4.11.9 tmval.Loan.sf_final . 103
4.11.10 tmval.Loan.sink_payments . 103
4.11.11 tmval.Loan.sinking . 103
4.11.12 tmval.Loan.rc_yield . 103
4.11.13 tmval.Loan.fixed_principal . 103
4.11.14 tmval.Loan.hybrid_principal . 104
4.11.15 tmval.Loan.sgr_equiv . 104

5 Notation Guide 105

6 Glossary 113

7 References 115

8 PDF Version 117

Index 119

iv

TmVal Documentation, Release v0.0.11

TmVal is a Python package for time value of money computations. It is intended for commercial use, open source
development, and as a tool for actuarial students studying for the Financial Mathematics exam.

CONTENTS 1

TmVal Documentation, Release v0.0.11

2 CONTENTS

CHAPTER

ONE

INTRODUCING TMVAL

TmVal is a Python library for mathematical interest theory, annuity, and bond calculations. This package arose
from the need to have more powerful computational finance tools for another project of mine, Miniature Economic
Insurance Simulator (MIES). What began as a simple submodule of MIES quickly spun off into its own repository as
its complexity grew and as its potential viability in commercial applications became more apparent.

This article begins by highlighting the advantages TmVal has over existing time value of money packages, and then
proceeds to demonstrate how TmVal can be used to solve problems found in actuarial science. Feel free to visit the
project repository and examine its source code at https://github.com/genedan/tmval.

1.1 Feature Highlights

• TmVal supports growth patterns that are more complex than compound interest. In addition to supporting
simple, compound, and nominal interest, TmVal handles growth patterns that may be of theoretical interest to
actuaries, such as continuously compounded rates (force of interest), polynomial growth, and arbitrary amount
and accumulation functions.

• TmVal provides equations of value computations for core financial instruments in actuarial science, such as
annuities, loans, bonds, and arbitrary cash flow streams. As development is still in the alpha stage, the types
of investments TmVal supports is rapidly expanding. I expect the package to soon offer classes for stocks and
options.

• TmVal’s classes are intended to correspond closely to symbols used in actuarial notation. Well-known symbols
encountered by actuaries, such as 𝑎𝑛 𝑖, 𝑠

(𝑚)
𝑛 𝑖 , (𝐼𝑃,𝑄 �̈�)𝑛 𝑖, etc., are supported. Refer to the Notation Guide in this

documentation to see the available symbols.

1.2 Amount and Accumulation Functions

TmVal supports the core growth functions of mathematical interest theory, the amount (𝐴𝐾(𝑡)) and accumulation
(𝑎(𝑡)) functions, implemented via the Amount and Accumulation classes. These classes support all sorts of
growth patterns, from simple and compound interest to more complex cases such as tiered investment accounts and
polynomial growth.

For instance, suppose we have the tiered investment account with annually compounded interest rates:

Required Minimum Balance Interest Rate
0 1%
10,000 2%
20,000 3%

3

https://github.com/genedan/tmval
https://github.com/genedan/MIES/
https://github.com/genedan/MIES/
https://github.com/genedan/tmval

TmVal Documentation, Release v0.0.11

If we invest 18,000 today, to what value does it grow after 10 years?

In [1]: from tmval import Amount, TieredBal

In [2]: tb = TieredBal(
...: tiers=[0, 10000, 20000],
...: rates=[.01, .02, .03]
...:)
...:

In [3]: amt = Amount(gr=tb, k=18000)

In [4]: print(amt.val(10))
22966.846915945713

If we were to invest 5,000 today, how long would it take to reach 2% and 3% interest, assuming no future contributions?

In [5]: print(tb.get_jump_times(k=5000))
[69.66071689357483, 104.66350567472134]

It will take almost 70 years to reach 2%, and about 105 years to reach 3%. That’s a long time!

1.3 Interest Rate Conversions

Interest rates are represented by a core data type in TmVal, the Rate class. This custom data type offers a convenient
way to perform computations with a variety of interest rate patterns as well as conversions between them. The main
patterns supported by the Rate class are:

1. Effective Interest

2. Effective Discount

3. Nominal Interest

4. Nominal Discount

5. Force of Interest

6. Simple Interest

7. Simple Discount

The relationships between compound interest rates can be represented with the following expression:(︂
1 +

𝑖𝑛

𝑛

)︂𝑛

= 1 + 𝑖 = (1 − 𝑑)−1 =

(︂
1 − 𝑑(𝑝)

𝑝

)︂−𝑝

Since there are so many varieties of rates, as well as relationships between them, an actuary would have to write over
twenty conversion functions to handle the full spectrum of interest rates if they weren’t using a package like TmVal.
The good news is that TmVal handles all these conversions with a single method, Rate.convert_rate().

For example, if we needed to convert 5% rate compounded annually to a nominal discount rate convertible monthly,
we could do the following:

In [6]: from tmval import Rate

In [7]: i = Rate(.05)

(continues on next page)

4 Chapter 1. Introducing TmVal

TmVal Documentation, Release v0.0.11

(continued from previous page)

In [8]: nom_d = i.convert_rate(
...: pattern="Nominal Discount",
...: freq=12
...:)
...:

In [9]: print(nom_d)
Pattern: Nominal Discount
Rate: 0.048691111787194874
Compounding Frequency: 12 times per year

Furthermore, we can demonstrate a conversion to nominal interest compounded quarterly, and then to 𝛿, the force of
interest, and then back to compound annual effective interest:

In [10]: nom_i = nom_d.convert_rate(
....: pattern="Nominal Interest",
....: freq=4
....:)
....:

In [11]: print(nom_i)
Pattern: Nominal Interest
Rate: 0.04908893771615652
Compounding Frequency: 4 times per year

In [12]: delta = nom_i.convert_rate(
....: pattern="Force of Interest"
....:)
....:

In [13]: print(delta)
Pattern: Force of Interest
Rate: 0.04879016416943141

In [14]: i2 = delta.convert_rate(
....: pattern="Effective Interest",
....: interval=1
....:)
....:

In [15]: print(i2)
Pattern: Effective Interest
Rate: 0.04999999999999938
Unit of time: 1 year

For more details, see The Rate Class, Revisited of the Usage Tutorial.

1.3. Interest Rate Conversions 5

TmVal Documentation, Release v0.0.11

1.4 Equations of Value

TmVal can solve for the time 𝜏 equation of value for common financial instruments such as annuities and loans, as
well as for arbitrary cash flows. This is done via the Payments class:∑︁

𝑘

𝐶𝑡𝑘

𝑎(𝜏)

𝑎(𝑡𝑘)
= 𝐵

𝑎(𝜏)

𝑎(𝑇)
.

For example, we can solve for the internal rate of return of an investment of 10,000 at time 0 which returns 5,000 at
time 1 and 6,000 at time 2:

In [16]: from tmval import Payments

In [17]: pmts = Payments(
....: amounts=[-10000, 5000, 6000],
....: times=[0, 1, 2]
....:)
....:

internal rate of return - two roots
In [18]: print(pmts.irr())
[0.0639410298049854, -1.5639410298049854]

We can also use the Payments class to find the time-weighted yield:

𝑖𝑡𝑤 = (1 + 𝑗𝑡𝑤)
1
𝑇 − 1 =

[︃
𝑟+1∏︁
𝑘=1

(1 + 𝑗𝑘)

]︃ 1
𝑇

− 1

where

1 + 𝑗𝑘 =

{︃𝐵𝑡1

𝐵0
𝑘 = 1

𝐵𝑡𝑘

𝐵𝑡𝑘−1
+𝐶𝑡𝑘−1

𝑘 = 2, 3, · · · , 𝑟 + 1
.

Suppose we deposit 100,000 in a bank account at time 0. It grows to 105,000 at time 1, and we immediately deposit
an additional 5,000. It then grows to 115,000 at time 2. The time-weighted yield is:

In [19]: pmts = Payments(
....: amounts=[100000, 5000],
....: times=[0, 1]
....:)
....:

In [20]: i = pmts.time_weighted_yield(
....: balance_times=[0, 1, 2],
....: balance_amounts=[100000, 105000, 115000],
....: annual=True
....:)
....:

time-weighted yield
In [21]: print(i)
Pattern: Effective Interest
Rate: 0.0477248077273309
Unit of time: 1 year

6 Chapter 1. Introducing TmVal

TmVal Documentation, Release v0.0.11

1.5 Annuities

Annuities are one of the core financial instruments underlying life insurance products. TmVal provides support for
many kinds of annuities via its Annuity class, such as:

1. Annuity-immediate: 𝑎𝑛 𝑖

2. Annuity-due: �̈�𝑛 𝑖

3. Perpetuity-immediate: 𝑎∞ 𝑖

4. Perpetuity-due: �̈�∞ 𝑖

5. Arithmetically increasing annuity-immediate: (𝐼𝑃,𝑄𝑎)𝑛 𝑖

6. Arithmetically increasing annuity-due: (𝐼𝑃,𝑄 �̈�)𝑛 𝑖

7. Arithmetically increasing perpetuity-immediate: (𝐼𝑃,𝑄𝑎)∞ 𝑖

8. Arithmetically increasing perpetuity-due: (𝐼𝑃,𝑄 �̈�)∞ 𝑖

9. Geometrically increasing annuity-immediate

10. Geometrically increasing annuity-due

11. Geometrically increasing perpetuity-immediate

12. Geometrically increasing perpetuity-due

13. Level annuity-immediate with payments more frequent than each interest period: 𝑎(𝑚)
𝑛 𝑖

14. Continuously-paying annuity: �̄�𝑛 𝑖

. . . and many more. To see what other symbols are supported, consult the Notation Guide.

Unlike other packages, which tend to use functions to represent the different types of annuities, TmVal represents
annuities as a class, which gives it access to several methods that can be performed on the annuity, such as equations
of value. So rather than simply returning a float value via a function, TmVal expands the manipulations that can be
done with an annuity. My aim is to allow the Annuity class to serve as a base class for, or to be embedded into more
complex insurance products.

We can perform simple calculations, such as finding the present value of a basic annuity-immediate, 𝑎5 5%:

In [22]: from tmval import Annuity

In [23]: print(Annuity(gr=.05, n=5).pv())
4.329476670630819

to more complex ones, such as the accumulated value of an arithmetically increasing annuity-due. . . (𝐼5000,100𝑠)5 5%:

In [24]: ann = Annuity(
....: amount=5000,
....: gr=.05,
....: n=5,
....: aprog=100,
....: imd='due'
....:)
....:

In [25]: print(ann.sv())
30113.389687500006

1.5. Annuities 7

TmVal Documentation, Release v0.0.11

. . . or even the present value of continuously paying annuities with continually varying payments, such as this one at a
simple discount rate of .036:

(𝐼 �̄�)𝑛𝑑𝑠=.036 =

∫︁ 5

0

𝑡𝑣(𝑡)𝑑𝑡

In [26]: def f(t):
....: return t
....:

In [27]: ann = Annuity(
....: amount=f,
....: period=0,
....: term=5,
....: gr=Rate(sd=.036)
....:)
....:

In [28]: print(ann.pv())
11.0

1.6 Amortization

TmVal’s Loan class has methods for obtaining information that we might want about loans, such as amortization
schedules and outstanding loan balances.

The output for several TmVal’s classes are intended to be compatible with Pandas, a popular data analysis library. The
output for the Loan class’s amortization() method is one such example.

For example, suppose we were to obtain a 2-year loan of 50,000, to be paid back with monthly payments made at the
end of each month. If the interest rate were 4% convertible quarterly, what is the amortization schedule?

In [29]: import pandas as pd

In [30]: from tmval import Loan, Rate

In [31]: gr = Rate(
....: rate=.04,
....: pattern="Nominal Interest",
....: freq=4)
....:

In [32]: my_loan = Loan(
....: amt=50000,
....: period=1/12,
....: term=2,
....: gr=gr,
....: cents=True
....:)
....:

In [33]: amort = pd.DataFrame(my_loan.amortization())

In [34]: print(amort)
time payment_amt interest_paid principal_paid remaining_balance

(continues on next page)

8 Chapter 1. Introducing TmVal

https://pandas.pydata.org

TmVal Documentation, Release v0.0.11

(continued from previous page)

0 0.00 NaN NaN NaN 50000.00
1 0.08 2170.96 166.11 2004.85 47995.15
2 0.17 2170.96 159.45 2011.51 45983.65
3 0.25 2170.96 152.77 2018.19 43965.46
4 0.33 2170.96 146.07 2024.89 41940.56
5 0.42 2170.96 139.34 2031.62 39908.94
6 0.50 2170.96 132.59 2038.37 37870.57
7 0.58 2170.96 125.82 2045.14 35825.43
8 0.67 2170.96 119.02 2051.94 33773.49
9 0.75 2170.96 112.21 2058.75 31714.74
10 0.83 2170.96 105.37 2065.59 29649.14
11 0.92 2170.96 98.50 2072.46 27576.68
12 1.00 2170.96 91.62 2079.34 25497.34
13 1.08 2170.96 84.71 2086.25 23411.09
14 1.17 2170.96 77.78 2093.18 21317.91
15 1.25 2170.96 70.82 2100.14 19217.77
16 1.33 2170.96 63.85 2107.11 17110.66
17 1.42 2170.96 56.85 2114.11 14996.55
18 1.50 2170.96 49.82 2121.14 12875.41
19 1.58 2170.96 42.78 2128.18 10747.22
20 1.67 2170.96 35.71 2135.25 8611.97
21 1.75 2170.96 28.61 2142.35 6469.62
22 1.83 2170.96 21.49 2149.47 4320.16
23 1.92 2170.96 14.35 2156.61 2163.55
24 2.00 2170.74 7.19 2163.55 -0.00

Using the Loan class’s olb_r() method, we can calculate the outstanding loan balance at any time, such as after 1
year, using the retrospective method:

OLB𝑘 = 𝐿𝑎(𝑘) −𝑄𝑠𝑘

In [35]: print(my_loan.olb_r(t=1))
25497.34126843426

Now, what if we choose to overpay during the first two months, with payments of 3,000 each, and then returning to
normal payments? What is the outstanding loan balance after 1 year?

In [36]: pmts = Payments(
....: amounts=[3000] * 2 + [2170.06] * 10,
....: times=[(x + 1) / 12 for x in range(12)]
....:)
....:

In [37]: print(my_loan.olb_r(t=1, payments=pmts))
23789.6328174795

1.6. Amortization 9

TmVal Documentation, Release v0.0.11

1.7 Bonds

TmVal’s Bond class supports all sorts of bond calculations. For example, suppose we have a 5-year, 1,000 bond that
pays 5% annual coupons and is redeemable for 1,250. Let’s s find the price of this bond if it has an 8% yield:

In [38]: from tmval import Bond

In [39]: bd = Bond(
....: face=1000,
....: red=1250,
....: alpha=.05,
....: cfreq=1,
....: term=5,
....: gr=.08
....:)
....:

In [40]: print(bd.price)
1050.3644981460952

We can also price bonds that have more complex, nonlevel coupon payments. Suppose instead that the bond in the
previous example instead pays 5% annual coupons in the first two years and 6% coupons in the last three years:

In [41]: bd = Bond(
....: face=1000,
....: red=1250,
....: alpha=[(.05, 0), (.06, 2)],
....: cfreq=[1,1],
....: term=5,
....: gr=.08
....:)
....:

verify coupon amounts
In [42]: print(bd.coupons.amounts)
[50.0, 50.0, 60.0, 60.0, 60.0]

verify coupon times
In [43]: print(bd.coupons.times)
[1.0, 2.0, 3.0, 4.0, 5.0]

In [44]: print(bd.price)
1072.458951054599

10 Chapter 1. Introducing TmVal

TmVal Documentation, Release v0.0.11

1.8 Term Structure

TmVal supports term structure of interest rate calculations. Suppose we have the following yields to maturity for 5%
par-value bonds with annual coupons:

Term Yield
1 Year 1.8%
2 Years 3%
3 Years 3.6%
4 Years 3.9%
5 Years 4.4%

We can calculate the forward rates. . .

(1 + 𝑓[𝑡, 𝑠])
𝑠−𝑡 =

(1 + 𝑟𝑠)
𝑠

(1 + 𝑟𝑡)𝑡

. . . for a 3-year bond:

In [45]: from tmval import forward_rates

In [46]: ytms = [.018, .03, .036, .039, .044]

In [47]: forward_rates(yields=ytms, alpha=.05, term=3)
Out[47]:
{(0,

3): Pattern: Effective Interest
Rate: 0.036501659647665496
Unit of time: 1 year,
(1,
4): Pattern: Effective Interest

Rate: 0.046910420267653796
Unit of time: 1 year,
(2,
5): Pattern: Effective Interest

Rate: 0.054953242172293804
Unit of time: 1 year}

1.9 Development Status

TmVal is currently in the alpha stage of development. In the coming weeks, I expect to add many more features, such
as:

1. Stocks

2. Options

3. Immunization

I anticipate declaring the project to be in beta stage once I’ve incorporated all of the main concepts on the syllabus of
the SOA’s financial mathematics exam. The beta stage of the project will involve the construction of a testing suite to
insure the accuracy of the computations in preparation for commercial use.

1.8. Term Structure 11

TmVal Documentation, Release v0.0.11

1.10 Further Reading

Go ahead and give TmVal a try! The next section is the Installation and Quickstart followed by the Usage Tutorial.
For technical documentation, consult the API Reference, which links to the source code of the project.

If you encounter bugs, in TmVal or its documentation, feel free to create a ticket or pull request on the GitHub
Repository.

12 Chapter 1. Introducing TmVal

https://github.com/genedan/tmval/issues
https://github.com/genedan/tmval/pulls
https://github.com/genedan/tmval
https://github.com/genedan/tmval

CHAPTER

TWO

INSTALLATION AND QUICKSTART

2.1 The easy way - pip

TmVal can be installed from PyPI from the terminal:

$ pip3 install tvmal

If you were successful, that should be it! You an move on to the next section.

2.2 From GitHub

TmVal can also be cloned from GitHub:

$ git clone https://github.com/genedan/TmVal

If you are missing any dependencies, you can install them with the requirements.txt file located in the repo:

$ cd TmVal
$ pip3 install requirements.txt

2.3 Troubleshooting

TmVal currently requires Python versions 3.6+. If the pip install command fails, you may need to install a newer
version of Python.

If you are having trouble using either the pip or GitHub installation methods, please create a ticket at:

https://github.com/genedan/TmVal/issues

13

https://github.com/genedan/TmVal/issues/

TmVal Documentation, Release v0.0.11

14 Chapter 2. Installation and Quickstart

CHAPTER

THREE

USAGE TUTORIAL

This section contains TmVal usage instructions. The order of topics will loosely follow the order of syllabus texts on
the Financial Mathematics actuarial exam, or a book on interest theory.

3.1 Growth

Growth refers to the change in value of money over time. TmVal provides tools to measure this growth, including the
familiar cases of simple and compound interest, as well as more complex ones.

We will start by demonstrating some practical applications concerning simple and compound interest, and then
gradually move on to more generalized growth patterns such as amount and accumulation functions.

3.1.1 Simple Interest

Simple interest is a pattern of money growth in which the value of money increases at a linear rate:

𝑎(𝑡) = 1 + 𝑠𝑡

where 𝑎(𝑡) refers to the value of 1 dollar (or other unit of currency) after time 𝑡, at interest rate s. For example, $1 that
grows at 5% simple interest is expected to grow to $1.05 after 1 year:

𝑎(1) = 1 + (.05)(1) = 1.05.

For quantities of money larger than dollar, we can express growth as:

𝐴𝐾(𝑡) = 𝐾(1 + 𝑠𝑡)

Where 𝐾 refers to the initial amount, or principal. For example, if we start with $5 and an interest rate of 5%, it
should grow to $5.25 after one year:

𝐴𝐾(1) = 5(1 + (.05)(1)) = 5.25

Examples

Let’s repeat the above examples using the TmVal package. Let’s start by importing Amount, and Rate which are
classes that can be used for simple interest calculations (we’ll explain what these classes mean in subsequent sections):

In [1]: from tmval import Amount, Rate

Let’s see how much $1 grows to after 1 year, at an interest rate of 5%:

15

TmVal Documentation, Release v0.0.11

In [2]: my_amt = Amount(k=1, gr=Rate(s=.05))

In [3]: print(my_amt.val(1))
1.05

Now, let’s change the principal to $5:

In [4]: my_amt = Amount(k=5, gr=Rate(s=.05))

In [5]: print(my_amt.val(1))
5.25

The output is 5.25, the same as above.

TmVal also comes with a simple interest solver, simple_solver() that can be used to solve for missing inputs.
For example, what rate of interest would give us $5.25, if we held $5 for a year?

In [6]: from tmval import simple_solver

In [7]: s = simple_solver(fv=5.25, pv=5, t=1)

In [8]: print(s)
Pattern: Simple Interest
Rate: 0.050000000000000044
Unit of time: 1 year

3.1.2 Compound Interest

Compound interest is a pattern of money growth in which the value of money increases at a geometric rate:

𝑎(𝑡) = (1 + 𝑖)2

where 𝑎(𝑡) refers to the value of 1 dollar (or other unit of currency) after time 𝑡, at interest rate i. For example, $1 that
grows at 5% simple interest is expected to grow to $1.1025 after 2 years:

𝑎(1) = (1.05)2 = 1.1025.

For quantities of money larger than dollar, we can express growth as:

𝐴𝐾(𝑡) = 𝐾(1 + 𝑖)𝑡

Where 𝐾 refers to the initial amount, or principal. For example, if we start with $5 and an interest rate of 5%, it
should grow to $5.5125 after two years:

𝐴𝐾(1) = 5(1.052) = 5.5125

Examples

Let’s repeat the above examples using the TmVal package. Let’s start by importing Amount, which is a class that can
be used for compound interest calculations:

In [1]: from tmval import Amount

Let’s see how much $1 grows to after 2 years, at an interest rate of 5%:

16 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In [2]: my_amt = Amount(k=1, gr=.05)

In [3]: print(my_amt.val(2))
1.1025

Now, let’s change the principal to $5:

In [4]: my_amt = Amount(k=5, gr=.05)

In [5]: print(my_amt.val(2))
5.5125

The output is 5.5125, the same as above.

TmVal also comes with a compound interest solver, compound_solver(), that can be used to solve for missing
inputs. For example, what rate of interest would give us $5.5125, if we held $5 for two years?

In [6]: from tmval import compound_solver

In [7]: i = compound_solver(fv=5.5125, pv=5, t=2)

In [8]: print(i)
Pattern: Effective Interest
Rate: 0.050000000000000044
Unit of time: 1 year

3.1.3 Amount Functions

Although we have introduced the familiar cases of simple and compound interest, not all growth patterns are linear or
geometric. Sometimes a growth pattern might be geometric, cubic, or some arbitrary user-defined pattern.

To accommodate these new patterns, we can define an amount function, which specifies how money grows for an
arbitrary growth pattern:

𝐴𝐾(𝑡)

Where 𝐾 specifies the amount of principal, 𝑡 specifies the amount of time, and 𝐴𝐾(𝑡) returns the value at time 𝑡 of 𝐾
invested at time 0.

Examples

Suppose money exhibits a quadratic growth pattern, specified by the amount function:

𝐴𝐾(𝑡) = 𝐾(.05𝑡2 + .05𝑡 + 1)

If we invest 𝐾 = 5 at time 0, how much does it grow to at time 5?

TmVal’s Amount class allows us to model this behavior. To solve the above problem, simply call the class and supply
the growth function and principal. First, define the growth function as a Python function that takes the time and
principal as arguments:

In [1]: from tmval import Amount

In [2]: def f(t, k):
...: return k * (.05 * (t **2) + .05 * t + 1)
...:

3.1. Growth 17

TmVal Documentation, Release v0.0.11

Now supply the growth function to the Amount class, and call my_amt.val(5) to get the answer:

In [3]: my_amt = Amount(gr=f, k=5)

In [4]: print(my_amt.val(5))
12.5

3.1.4 Accumulation Functions

The accumulation function is a special case of the amount function where 𝐾 = 1:

𝑎(𝑡) = 𝐴1(𝑡)

It is often convenient to use this form to explore the growth of money without having to bother with the principal.

The amount and accumulation functions are often related by the following expression:

𝐴𝐾(𝑡) = 𝐾𝑎(𝑡)

Examples

TmVal’s Accumulation class models accumulation functions.

Suppose money exhibits a quadratic growth pattern, specified by the amount function:

𝑎(𝑡) = .05𝑡2 + .05𝑡 + 1

How much does $1 invested at time 0 grow to at time 5? To solve this problem, we import the Accumulation class,
supply the growth function in a similar manner as we had done with the Amount class, except we do not need to
supply a value for 𝐾.

In [1]: from tmval import Accumulation

In [2]: def f(t):
...: return .05 * (t **2) + .05 * t + 1
...:

In [3]: my_acc = Accumulation(gr=f)

In [4]: print(my_acc.val(5))
2.5

Note that we could have also solved this problem with the Amount class, by setting 𝐾 = 1.

In [5]: from tmval import Amount

In [6]: def f(t, k):
...: return k * (.05 * (t **2) + .05 * t + 1)
...:

In [7]: my_amt = Amount(gr=f, k=1)

In [8]: print(my_amt.val(5))
2.5

18 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

If the amount and accumulation functions are proportionally related, we can extract the accumulation function from
the Amount class by calling the get_accumulation() method, which returns an Accumulation class derived
from the Amount class:

In [9]: from tmval import Amount

In [10]: def f(t, k):
....: return k * (.05 * (t **2) + .05 * t + 1)
....:

In [11]: my_amt = Amount(gr=f, k=1)

In [12]: my_acc = my_amt.get_accumulation()

In [13]: print(my_acc.val(5))
2.5

3.1.5 Interest

Suppose we invest 𝐾 at time 0. We define the amount of interest earned between times 𝑡1 and 𝑡2 as:

𝐴𝐾(𝑡2) −𝐴𝐾(𝑡1).

We define the effective rate of interest for the interval as:

𝑖[𝑡1,𝑡2] =
𝑎(𝑡2) − 𝑎(𝑡1)

𝑎(𝑡1)

and, if 𝐴𝐾(𝑡) = 𝐾𝑎(𝑡),

𝑖[𝑡1,𝑡2] =
𝐴𝐾(𝑡2) −𝐴𝐾(𝑡1)

𝐴𝐾(𝑡1)
.

To examine the effective interest rate for a single time period, the 𝑛-th time period, we can define:

𝑖𝑛 = 𝑖[𝑛−1,𝑛] =
𝑎(𝑛) − 𝑎(𝑛− 1)

𝑎(𝑛− 1)

Examples

We can use the Amount class to make various interest calculations. For example, assume the following amount
function:

𝐴𝐾(𝑡) = 𝐾(.02𝑡2 + .02𝑡 + 1)

If we invest $5 at time 0, What is the interest earned during the 5th time period?

First lets set up our Amount instance:

In [1]: from tmval import Amount

In [2]: def f(t, k):
...: return k * (.02 * (t **2) + .02 * t + 1)
...:

In [3]: my_amt = Amount(gr=f, k=5)

3.1. Growth 19

TmVal Documentation, Release v0.0.11

We can use the Amount class’s interest_earned() method to get the answer:

In [4]: interest = my_amt.interest_earned(t1=4, t2=5)

In [5]: print(interest)
1.0

What is the effective interest rate during the 5th time period? We can use the Amount class’s effective_rate()
method to get the answer:

In [6]: eff_interest_rate_amt = my_amt.effective_rate(n=5)

In [7]: print(eff_interest_rate_amt)
Pattern: Effective Interest
Rate: 0.14285714285714285
Unit of time: 1 year

We can also use the effective_interval() method to find the effective rate over a longer interval, say from
times 1 to 5:

In [8]: eff_interval_rate_amt = my_amt.effective_interval(t1=1, t2=5)

In [9]: print(eff_interval_rate_amt)
Pattern: Effective Interest
Rate: 0.5384615384615384
Unit of time: 4 years

TmVal’s Accumulation class is a subclass of the Amount class. This means that many of the methods that can be
used from the Amount class can also be used by the Accumulation class.

Assuming proportionality, we can define an amount function from an accumulation function and then get the effective
interest rate for the 5th interval. It should be the same answer as that achieved from the amount function:

In [10]: import math

In [11]: my_acc = my_amt.get_accumulation()

In [12]: eff_interest_rate_acc = my_acc.effective_rate(n=5)

In [13]: print(eff_interest_rate_acc)
Pattern: Effective Interest
Rate: 0.142857142857143
Unit of time: 1 year

In [14]: print(math.isclose(eff_interest_rate_acc.rate, eff_interest_rate_amt.rate,
→˓rel_tol=.0001))
True

Note that there is some loss of precision due to floating point operations, so we use isclose() from the math
library for the comparison.

20 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.1.6 The Rate Class

TmVal’s Rate class is the central class for representing interest rates. Although we have only introduced two types
of rates so far, simple and compound interest, we will shortly show that there are many different types of interest
rates and ways to convert one rate to another. This introduces several complexities into the theory of interest, which
motivated the need to create a special class to make life easier for the user.

To define a rate, we need to keep a few things in mind. If you are new to interest theory, you may not have encountered
all of these concepts yet, but we will revisit them later once we’ve gone over nominal rates and the force of interest.

Rate The magnitude of the rate, for example, the 5% in “5% compounded annually.”

Pattern A name used to describe whether the rate pertains to simple or compound interest, and whether it is nominal,
effective or interest. For now, the only two patterns you have been introduced to are:

1. Simple Interest

2. Effective Interest (compound)

Interval The interval over which the rate is effective. For example, if the rate is “5% compounded annually,” the
interval is 1. If it were effective every other year, then the interval would be 2. If it were effective over half a year then
the interval would be .5.

Compounding Frequency This refers to how often the interest is compounded for nominal rates, to be explored later.
We don’t have to think about it yet as this is not applicable to simple or compound effective interest.

Examples

The interest rate is 5% compounded annually. Define this using the rate class.

To do this, we import TmVal’s Rate class, and then supply the arguments. We set rate=.05,
pattern="Effective Interest", and interval=1

In [1]: from tmval import Rate

In [2]: gr = Rate(
...: rate=.05,
...: pattern="Effective Interest",
...: interval=1
...:)
...:

In [3]: print(gr)
Pattern: Effective Interest
Rate: 0.05
Unit of time: 1 year

That’s a lot of arguments to supply. Since compound interest is so common, there’s a more convenient way to initialize
a compound interest rate. We can supply this by setting a single argument i=.05 or even just supplying the value .05
without specifying any arguments. What happens is that the rest of the arguments are assumed to be that of compound
annual interest.

In [4]: gr2 = Rate(i=.05)

In [5]: print(gr2)
Pattern: Effective Interest
Rate: 0.05
Unit of time: 1 year

(continues on next page)

3.1. Growth 21

TmVal Documentation, Release v0.0.11

(continued from previous page)

In [6]: gr3 = Rate(.05)

In [7]: print(gr)
Pattern: Effective Interest
Rate: 0.05
Unit of time: 1 year

We know just enough about compound interest to do some simple conversions. Instead of being effective over
a 1-year interval, what if we had an equivalent rate effective over a two year interval? We can call the method
convert_rate() and set the interval to two:

In [8]: gr4 = gr3.convert_rate(
...: pattern="Effective Interest",
...: interval=2
...:)
...:

In [9]: print(gr4)
Pattern: Effective Interest
Rate: 0.10250000000000004
Unit of time: 2 years

What about 5% simple interest that grows annually? As before, we can supply information to multiple arguments, or
simple just set a single argument s=.05 if we know the interval is 1 year (the most common case).

In [10]: gr5 = Rate(
....: rate=.05,
....: pattern="Simple Interest",
....: interval=1
....:)
....:

In [11]: print(gr5)
Pattern: Simple Interest
Rate: 0.05
Unit of time: 1 year

In [12]: gr6 = Rate(s=.05)

In [13]: print(gr6)
Pattern: Simple Interest
Rate: 0.05
Unit of time: 1 year

You may be wondering why we would need a separate class just for interest rates. In other Python finance packages,
you just need to supply a float because usually the rate is assumed to be compound annual interest. However, in
mathematical interest theory, there are many different types of interest rates, which makes things complicated if we
want financial instruments such as annuities and bonds to handle all of these types of rates. You will see in the next
few sections why it’s more convenient to have a separate class for interest rates.

However, since compound annual interest prevails in the vast majority of applications, most of TmVal’s classes and
functions that take a rate object will assume compound annual interest if you supply a float object instead of a Rate
object.

22 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.1.7 A Friendly Reminder

If you have read the last couple sections on accumulation and amount functions, you may wonder why we have to
define a growth function prior to defining an Amount or Accumulation class. After all, this seems cumbersome
and it would be more convenient to simply create an Amount or Accumulation class by specifying an interest rate.

The good news is, we can actually do this! All you have to do is supply a float object to either the Amount or
Accumulation classes. Since compound annual interest is the most common scenario, these classes are defined to
assume compound annual interest as the default case when supplied with a float. This reduces the amount of typing
required by the user.

For example, if money grows at a compound rate of 5%, we can define an accumulation class with a single argument,
and see what value it accumulates to after 5 years:

In [1]: from tmval import Accumulation

In [2]: my_acc = Accumulation(gr=.05)

In [3]: print(my_acc.val(5))
1.2762815625000004

If you want to be more explicit about the interest rate, both classes also accept a Rate object:

In [4]: from tmval import Rate

In [5]: my_acc2 = Accumulation(gr=Rate(.05))

In [6]: print(my_acc2.val(5))
1.2762815625000004

In [7]: gr=Rate(
...: rate=.05,
...: pattern="Effective Interest",
...: interval=1
...:)
...:

In [8]: my_acc3 = Accumulation(gr=gr)

In [9]: print(my_acc3.val(5))
1.2762815625000004

This also works with simple interest:

In [10]: my_acc4 = Accumulation(gr=Rate(s=.05))

In [11]: print(my_acc4.val(5))
1.25

While it’s possible to even define your own growth functions for simple and compound interest and supply them to the
Accumulation and Amount classes, it’s generally not recommended and it’s more computationally efficient to use
the Rate class unless you have a custom growth pattern, since more complex financial classes can use more efficient
algorithms if they detect a Rate object instead of a function.

3.1. Growth 23

TmVal Documentation, Release v0.0.11

3.1.8 Tiered Accounts

Recall that the amount and accumulation functions are often related by the property:

𝐴𝐾(𝑡) = 𝐾𝑎(𝑡)

This is not always the case. An example where this relationship does not hold is the tiered investment account. A
tiered investment account is one that offers different interest rates at different balances. For example, the following
interest rate schedule determines what interest rate is paid according to the account balance:

Required Minimum Balance Interest Rate
0 1%
10,000 2%
20,000 3%

This means that the account pays 1% interest when the balance is less than 10,000. Once that balance grows to 10,000,
the account starts paying 2%. When it hits 20,000, the account starts paying 3%.

Examples

TmVal’s TieredBal class offers a way to model this type of account. You simply supply the tiers and rates. Let’s
do this using the above table:

In [1]: from tmval import TieredBal

In [2]: my_tiered_bal = TieredBal(
...: tiers=[0, 10000, 20000],
...: rates=[.01, .02, .03]
...:)
...:

TieredBal is a growth pattern that can be supplied to the Amount class, which you can then use to access its
methods. If we invest 18,000 today, to what value does it grow after 10 years?

In [3]: from tmval import Amount

In [4]: my_amt = Amount(gr=my_tiered_bal, k=18000)

In [5]: print(my_amt.val(10))
22966.846915945713

You can also use TieredBal to find the times at which you would expect the interest rate to jump, given an initial
investment. We do this by calling the method get_jump_times(). Assuming no future contributions, how long
will it take to hit 2% and 3% interest?

In [6]: print(my_tiered_bal.get_jump_times(k=5000))
[69.66071689357483, 104.66350567472134]

It will take almost 70 years to reach 2%, and about 105 years to reach 3%. That’s a long time!

TmVal also offers the TieredTime class, where the interest rate paid varies by the length of time the account is held:

Required Minimum Time Interest Rate
0 years 1%
1 year 2%
2 years 3%

24 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

This means, the account pays 1% during the first year, 2% during the second year, and 3% for subsequent years. Let’s
model this in TmVal, and find out how much 18,000 grows after 10 years:

In [7]: from tmval import TieredTime

In [8]: my_tiered_time = TieredTime(
...: tiers=[0, 1, 2],
...: rates=[.01, .02, .03]
...:)
...:

In [9]: my_amt = Amount(gr=my_tiered_time, k=18000)

In [10]: print(my_amt.val(10))
23490.4776812194

3.1.9 Discount

Note: This definition of discount may differ from what you are used to in finance. If you typically use the terms
interest rate and discount rate interchangeably, then stick with the interest rate operations in TmVal. If you encounter
the term ‘discount rate’ in TmVal, please be aware that it refers to actuarial discount, discount interest, or interest up
front.

For loans, sometimes, interest is paid up front. For example, if you were to take out a loan for $1000 to be repaid in 1
year, the lender may ask you to pay $100 immediately for use of the remaining $900. This value of $100 is known as
the discount on the loan.

Mathematically, discount be expressed as:

𝐾 −𝐾𝐷 = (1 −𝐷)𝐾,

Where 𝐾 is the amount of the loan, 𝐷 is the amount of discount, and (1−𝐷)𝐾 is the amount available to the borrower
at time 0.

We can also think of discount as a rate. The effective discount rate over an interval [𝑡1, 𝑡2] is defined as:

𝑑[𝑡1,𝑡2] =
𝑎(𝑡2) − 𝑎(𝑡1)

𝑎(𝑡2)
.

When 𝐴𝐾(𝑡) = 𝐾𝑎(𝑡),

𝑑[𝑡1,𝑡2] =
𝐴𝐾(𝑡2) −𝐴𝐾(𝑡1)

𝐴𝐾(𝑡2)
.

The discount rate for the 𝑛-th time period is defined as:

𝑑𝑛 =
𝑎(𝑛) − 𝑎(𝑛− 1)

𝑎(𝑛)

3.1. Growth 25

TmVal Documentation, Release v0.0.11

Examples

Suppose we borrow 1000 to be paid back in 1 year, and we need to pay 100 of discount up front. What is the effective
discount on the loan?

To solve this problem, we can use the discount_interval() method of the Amount class. TmVal also has a
class called SimpleLoan which is a special case of money growth in which a lump sum is borrowed and paid back
with a single payment at a later point in time. These loans are common between people outside the context of banking.

SimpleLoan is callable, and can be passed to the Amount class just like a growth function.

To create a simple loan, supply the principal, term, and discount amount to SimpleLoan. Then we can use
discount_interval() to get the discount rate over the interval [0, 1]:

In [1]: from tmval import Amount, SimpleLoan

In [2]: my_loan = SimpleLoan(principal=1000, term=1, discount_amt=100)

In [3]: my_amt = Amount(gr=my_loan, k=1000)

In [4]: print(my_amt.discount_interval(t1=0, t2=1))
0.1

Note that since the term is just one period, we can also simply this calculation by using the method
effective_discount():

In [5]: print(my_amt.effective_discount(n=1))
0.1

The SimpleLoan class also has some attributes that can be called to obtain information about the loan:

In [6]: print(my_loan.principal)
1000

In [7]: print(my_loan.discount_amt)
100

In [8]: print(my_loan.discount_rate)
0.1

In [9]: print(my_loan.amount_available)
900

3.1.10 Interest-Discount Relationships

The relationship between interest rates and discount rates can be expressed with a variety of equations. One thing to
keep in mind is that if we borrow a dollar at time 𝑡1 a discount rate of 𝑑, we will receive (1 − 𝑑) dollars today.

If we were to hold invest that dollar for a year at the interest rate 𝑖, it would grow to:

(1 − 𝑑)(1 + 𝑖) = 1.

This relationship can be generalized to apply between two time periods, 𝑡1 and 𝑡2:

1 = (1 + 𝑖[𝑡1,𝑡2])(1 − 𝑑[𝑡1,𝑡2]).

26 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In the age of hand calculations, several other equations have been useful:

𝑖[𝑡1,𝑡2] =
𝑑[𝑡1,𝑡2]

1 − 𝑑[𝑡1,𝑡2]

𝑑[𝑡1,𝑡2] =
𝑖[𝑡1,𝑡2]

1 + 𝑖[𝑡1,𝑡2]

1 = (1 + 𝑖𝑛)(1 − 𝑑𝑛)

𝑖𝑛 =
𝑑𝑛

1 − 𝑑𝑛

𝑑𝑛 =
𝑖𝑛

1 + 𝑖𝑛

𝑖 =
𝑑

1 − 𝑑

𝑖 =
1

1 − 𝑑
− 1

𝑑 =
𝑖

1 + 𝑖

𝑑 = 1 − 1

1 + 𝑖

Examples

TmVal’s Rate class provides a built-in method to convert interest rates to discount rates and vice-versa. These are
simple functions, but are very useful as they tend to be embedded in more complex financial instruments.

Suppose the interest rate is 5%, what is the discount rate?

First, we define a compound effective rate using the Rate class. Then, we use the method convert_rate() to
convert the rate to a discount rate:

In [1]: from tmval import Rate

In [2]: i = Rate(.05)

In [3]: d = i.convert_rate(
...: pattern='Effective Discount',
...: interval=1
...:)
...:

In [4]: print(d)
Pattern: Effective Discount
Rate: 0.04761904761904767
Unit of time: 1 year

3.1. Growth 27

TmVal Documentation, Release v0.0.11

Again using convert_rate(), we can convert the discount rate back to an interest rate:

In [5]: from tmval import Rate

In [6]: i = d.convert_rate(
...: pattern='Effective Interest',
...: interval=1
...:)
...:

In [7]: print(i)
Pattern: Effective Interest
Rate: 0.050000000000000044
Unit of time: 1 year

3.1.11 Time Value of Money

The time value of money is a phenomenon whereby the value of money changes with time. One reason why interest
is required to facilitate lending is because people attach different values of money at different times. For example, if I
needed to borrow money from my neighbor today, they would no longer have immediate use of the money. But money
in the future may be worth less to the neighbor than money that they can use now.

Therefore, paying interest can be used to convince my neighbor to part with his money today, if he is confident that he
will get the money back in the future along with the interest.

The value of money today of money to be received at some point in the future is called the present value. The present
value of 𝐿 to be received at time 𝑡 can be calculated by multiplying it by what we call the discount function. We define
the discount function as:

𝑣(𝑡) =
1

𝑎(𝑡)

Where 𝑎(𝑡) is the accumulation function. This makes sense because if we were to invest 𝐿𝑣(𝑡) today, we would expect
it to grow to 𝐿𝑣(𝑡)𝑎(𝑡) = 𝐿 at time 𝑡.

Example

Suppose we will receive 5,000 at time 5. If the effective interest rate is 5%, how much is it worth today?

Since TmVal’s Accumulation class comes with an accumulation function, it also comes with a discount function.
We can find the present value of 5,000 by passing it to the discount_func() method, along with the time
indicating how far back we would like to discount the value.

In [1]: from tmval import Accumulation

In [2]: my_acc = Accumulation(.05)

In [3]: pv = my_acc.discount_func(t=5, fv=5000)

In [4]: print(pv)
3917.630832342294

One neat thing TmVal can do is that it can find out how much you need to invest in the future to get a desired amount
at an even later point in time. For example, if you wanted to make sure you had 10,000 at 𝑡2 = 10, how much do you
need to invest at 𝑡1 = 5 when the effective interest rate is 5%?

28 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In [5]: from tmval import Accumulation

In [6]: my_acc = Accumulation(.05)

In [7]: future_principal = my_acc.future_principal(t1=5, t2=10, fv=10000)

In [8]: print(future_principal)
7835.261664684589

You need to invest 7,835.26 5 years from now, to get 10,000 10 years from now.

3.1.12 Nominal Interest

So far, what we have called the annual effective interest rate is also called the APY, or annual percentage yield.
However, in practice, banks often quote what is called the annual percentage rate (APR), which is not the same thing
as the APY.

For example, the bank might quote something like an APR of 6% compounded twice a year. In reality, this means that
after 6 months of opening an account, each dollar is compounded at %6 / 2 = 3%, and then compounded again at the
same rate after another 6 months: (︂

1 +
.06

2

)︂2

= 1.0609

Which is equivalent to an APY of 6.09%.

This concept is generalized in interest theory with a term called the nominal interest rate. We denote this rate as 𝑖(𝑚)

compounded 𝑚 times per year. For example, an APR of 6% compounded twice per year is the same as a nominal
interest rate of 𝑖(2) = 6% compounded 𝑚 = 2 times per year. In each period, money grows at a factor of:(︂

1 +
𝑖(𝑚)

𝑚

)︂𝑚

The nominal and effective interest rates are related by the following equations:

𝑖(𝑚) = 𝑚[(1 + 𝑖)
1
𝑚 − 1]

𝑖 =

(︂
1 +

𝑖(𝑚)

𝑚

)︂𝑚

− 1

Examples

Now that we’ve introduced the concept of nominal interest, we can demonstrate how to define a nominal interest rate
by using TmVal’s Rate class by setting the pattern argument. Nominal interest is one of the valid patterns that
you can provide to Rate.

Let’s define a nominal interest rate of 6%, compounded twice per year.

In [1]: from tmval import Rate

In [2]: nom = Rate(
...: rate=.06,
...: pattern="Nominal Interest",
...: freq=2

(continues on next page)

3.1. Growth 29

TmVal Documentation, Release v0.0.11

(continued from previous page)

...:)

...:

In [3]: print(nom)
Pattern: Nominal Interest
Rate: 0.06
Compounding Frequency: 2 times per year

We can also demonstrate some more interesting rate conversions than we had previously. What annual effective interest
rate is equivalent to a nominal interest rate of 6%, compounded twice per year?

In [4]: i = nom.convert_rate(
...: pattern="Effective Interest",
...: interval=1
...:)
...:

In [5]: print(i)
Pattern: Effective Interest
Rate: 0.060899999999999954
Unit of time: 1 year

Let’s do the reverse to confirm that it’s working:

In [6]: nom2 = i.convert_rate(
...: pattern="Nominal Interest",
...: freq=2
...:)
...:

In [7]: print(nom2)
Pattern: Nominal Interest
Rate: 0.06000000000000005
Compounding Frequency: 2 times per year

There are some shortcut aliases that you can provide to the pattern argument to shorten the amount of typing you
need to do. One of them is ‘apr,’ if you are more comfortable using calling a nominal interest rate the annual percentage
rate:

In [8]: nom3 = Rate(
...: rate=.06,
...: pattern='apr',
...: freq=2
...:)
...:

In [9]: print(nom3)
Pattern: Nominal Interest
Rate: 0.06
Compounding Frequency: 2 times per year

30 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.1.13 Interest-Discount Rate Conversions

In addition to the concept of nominal interest, there’s also nominal discount. In interest theory, various relationships
between interest rates, discount rates, and their nominal counterparts can be derived:

𝑑 = 1 −
(︂

1 − 𝑑(𝑚)

𝑚

)︂𝑚

𝑑(𝑚) = 𝑚[1 − (1 − 𝑑)
1
𝑚]

1 =

(︂
1 − 𝑑(𝑚)

𝑚

)︂(︂
1 +

𝑖(𝑚)

𝑚

)︂
0 =

𝑖(𝑚)

𝑚
− 𝑑(𝑚)

𝑚
− 𝑖(𝑚)

𝑚

𝑑(𝑚)

𝑚

𝑖(𝑚)

𝑚
=

𝑑(𝑚)

𝑚

1 − 𝑑(𝑚)

𝑚

𝑑(𝑚)

𝑚
=

𝑖(𝑚)

𝑚

1 + 𝑖(𝑚)𝑚(︂
1 +

𝑖𝑛

𝑛

)︂𝑛

= 1 + 𝑖 = (1 − 𝑑)−1 =

(︂
1 − 𝑑(𝑝)

𝑝

)︂−𝑝

It would cumbersome to have to use over a dozen different functions to convert one rate to another. Fortunately, the
method convert_rate() of the Rate class allows us to convert between any of these rates. Now, you can see
why it’s useful to have interest rates represent by a custom data type, rather than a float object.

To a convert a rate from one pattern to another, take the following steps:

1. Supply a desired pattern to convert to (‘Effective Interest’, ‘Effective Discount, ‘Nominal Interest’, ‘Nominal
Discount’)

2. If the desired pattern is nominal, supply a compounding frequency

3. If the desired pattern is an effective interest or discount rate, supply a desired interval

Examples

Suppose we have a nominal discount rate of 𝑑(12) = .06 compounded monthly. What is the equivalent nominal interest
rate compounded quarterly?

In [1]: from tmval import Rate

In [2]: nom_d = Rate(
...: rate=.06,
...: pattern="Nominal Discount",
...: freq=12
...:)
...:

In [3]: print(nom_d)
Pattern: Nominal Discount
Rate: 0.06
Compounding Frequency: 12 times per year

In [4]: nom_i = nom_d.convert_rate(

(continues on next page)

3.1. Growth 31

TmVal Documentation, Release v0.0.11

(continued from previous page)

...: pattern="Nominal Interest",

...: freq=4

...:)

...:

In [5]: print(nom_i)
Pattern: Nominal Interest
Rate: 0.06060503776426174
Compounding Frequency: 4 times per year

Now, let’s convert it to an annual effective interest rate:

In [6]: i = nom_i.convert_rate(
...: pattern="Effective Interest",
...: interval=1
...:)
...:

In [7]: print(i)
Pattern: Effective Interest
Rate: 0.061996366970891614
Unit of time: 1 year

Now, let’s convert it back to a nominal discount rate compounded monthly:

In [8]: nom_d2 = i.convert_rate(
...: pattern="Nominal Discount",
...: freq=12
...:)
...:

In [9]: print(nom_d2)
Pattern: Nominal Discount
Rate: 0.06000000000000005
Compounding Frequency: 12 times per year

3.1.14 Force of Interest

It can be shown that as the compounding frequency approaches infinity, the nominal interest and discount rates
approach a value 𝛿 called the force of interest:

lim
𝑚→∞

𝑖(𝑚) = lim
𝑚→∞

𝑑(𝑚) = 𝛿.

Examples

TmVal can handle force of interest problems by supplying a continually compounded interest rate to the Amount or
Accumulation classes.

Suppose we have the force of interest 𝛿 = .05. What is the value at time 5 of 5,000 invested at time 0?

In [1]: from tmval import Amount, Rate

In [2]: my_amt = Amount(gr=Rate(delta=.05), k=5000)

(continues on next page)

32 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

(continued from previous page)

In [3]: print(my_amt.val(5))
6420.1270834387105

Suppose instead, we have 5,000 at time 5. What is the present value if the force of interest remains at 5%?

In [4]: from tmval import Accumulation, Rate

In [5]: my_acc = Accumulation(gr=Rate(delta=.05))

In [6]: pv = my_acc.discount_func(t=5, fv=5000)

In [7]: print(pv)
3894.0039153570224

This could have also been solved by using the previously-introduced compound_solver():

In [8]: from tmval import compound_solver, Rate

In [9]: gr = Rate(delta=.05)

In [10]: pv = compound_solver(gr=gr, fv=5000, t=5)

In [11]: print(pv)
3894.0039153570224

3.1.15 The Rate Class, Revisited

Now that we have introduced several types of interest rates as well as the relationships between them, it’s worth
revisiting the Rate class to appreciate more of its features.

Pattern

The types of patterns that you can supply to the rate class are:

1. Effective Interest

2. Effective Discount

3. Nominal Interest

4. Nominal Discount

5. Force of Interest

6. Simple Interest

7. Simple Discount

Interval

Effective Interest, Effective Discount, Simple Interest, and Simple Discount are classified internally by TmVal as
“effectives.” When specifying an effective pattern, you must also supply an interval over which the rate is effective to
the interval argument. This value is usually 1, representing a 1-year rate.

Compounding Frequency

Nominal Interest and Nominal discount are classified internally as the “nominals.” When supplying a nominal pattern,
you must also supply a compounding frequency to the argument freq.

Conversions

3.1. Growth 33

TmVal Documentation, Release v0.0.11

Effective Interest, Effective Discount, Nominal Interest, Nominal Discount, and Force of Interest are classified as
“compounds” and are convertible to each other.

Simple Interest and Simple Discount are classified as “simples” and are not convertible to each other because they do
not correspond to the same accumulation function. You can however, use the convert_rate() method to change
the interval of a simple pattern, but not the pattern itself.

Simple patterns cannot be converted to compound patterns and vice-versa.

Standardization

Many of the TmVal’s classes, such as the previously-introduced Amount and Accumulation classes, as well as
more complex financial instruments to be introduced later, such as the Annuity class, will standardize a compound
rate prior to performing computations.

The Rate class has a method called standardize(), which will convert any compound pattern to an annually
compounded effective interest rate.

Shortcut Arguments

Effective Interest, Effective Discount, Simple Interest, Simple Discount, and Force of Interest can be declared by
providing a single arguments i, d, s, sd, and delta, respectively. In the case of annual Effective Interest, the most
common scenario by far, you do not have to use any keyword arguments at all. Simply calling Rate(.05) will
declare an annually compounded interest rate of 5%.

Examples

Suppose we have a continually compound interest rate of 5%, what is the equivalent nominal discount rate compounded
6 times per year?

In [1]: from tmval import Rate

In [2]: fr = Rate(delta=.05)

In [3]: print(fr)
Pattern: Force of Interest
Rate: 0.05

In [4]: nom_d = fr.convert_rate(
...: pattern="Nominal Discount",
...: freq=6
...:)
...:

In [5]: print(nom_d)
Pattern: Nominal Discount
Rate: 0.049792244166744215
Compounding Frequency: 6 times per year

Let’s see what happens when we call standardize():

In [6]: i = fr.standardize()

In [7]: print(i)
Pattern: Effective Interest
Rate: 0.05127109637602412
Unit of time: 1 year

We get an annually compounded effective interest rate.

34 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.1.16 The Investment Year Method

The investment year method is a growth pattern in which the rate of interest applicable to an investment varies by
year and depends on the time at which that investment was made. The rates are taken from a table, which might look
something like this:

Year of
Investment

Rate in Year
1

Rate in Year
2

Rate in Year
3

Rate in Year
4

First Ultimate
Rate

2000 .06 .065 .0575 .06 .065
2001 .07 .0625 .06 .07 .0675
2002 .06 .06 .0725 .07 .0725
2003 .0775 .08 .08 .0775 .0715

To get the rates for an investment, you first identify the row using the leftmost column based on the year in which
the investment was made, for each subsequent year, you move one column to the right until reaching the rightmost
column. Each subsequent year after that, you move one column down.

For example, an investment made in the year 2000 and held for 7 years will have applicable rates of 6% in the first
year, 6.5% in the second, 5.75% in the third, 6% in the fourth, 6.5% in the fifth, 6.75% in the sixth, and 7.25% in the
seventh.

Examples

Suppose we invest 1,000 in the year 2000. If the rates in the above table represent annually compounded rates, how
much does the investment grow to after 7 years?

Note that this method exhibits the same growth pattern as TmVal’s TieredTime class. We can use the function
tt_iym() to read the above table if is in the form of a Python dictionary. The function parses the table based on the
year of investment t0=2000, and then returns a TieredTime object. This object can then be passed to the Amount
class along with the 1,000, which we can then use to calculate the answer.

In [1]: from tmval import Amount, tt_iym

In [2]: iym_table = {
...: 2000: [.06, .065, .0575, .06, .065],
...: 2001: [.07, .0625, .06, .07, .0675],
...: 2002: [.06, .06, .0725, .07, .0725],
...: 2003: [.0775, .08, .08, .0775, .0715]
...: }
...:

In [3]: tt = tt_iym(table=iym_table, t0=2000)

In [4]: amt = Amount(gr=tt, k=1000)

In [5]: print(amt.val(7))
1542.9665343418887

3.1. Growth 35

TmVal Documentation, Release v0.0.11

3.2 Value

3.2.1 The Payments Class

TmVal offers a Payments class, which is exactly what you think it is, a collection of transfers of money from one
entity to another. Since we don’t really care who is getting what at the moment, a Payments object in TmVal is
simply a collection of payment amounts, payment times, and a growth rate object.

The growth rate object can be a float, in which case we assume compound effective interest. You can also provide a
Rate object for other interest patterns, including compound effective interest. It can also be an Accumulation object,
which gives you an option if the growth pattern you want to model is more complex.

While simple, Payments constitutes a core data type in TmVal. It is used, along with the fundamentals of interest
theory that we have developed so far, to construct more complex financial instruments and transactions, such as
annuities and loans.

Examples

Suppose we have payments of 1,000, 2,000, and 3,000 that occur at times 1, 2, and 3, respectively. If we have 5%
compound interest, construct a Payments object and explore its contents.

To declare a Payments class, pass the payment amounts, times, and interest rate to the arguments amounts, times,
and gr, respectively. Let’s use dir to see what attributes and methods we can explore.

In [1]: from tmval import Payments

In [2]: pmts = Payments(amounts=[1000, 2000, 3000], times=[1, 2, 3], gr=.05)

In [3]: dir(pmts)
Out[3]:
['__add__',
'__class__',
'__delattr__',
'__dict__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__le__',
'__lt__',
'__module__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',

(continues on next page)

36 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

(continued from previous page)

'__weakref__',
'amounts',
'append',
'dw_approx',
'eq_val',
'equated_time',
'gr',
'group_payments',
'irr',
'npv',
'pt_bal',
'set_accumulation',
'time_weighted_yield',
'times']

First, we notice the amounts and times we provided to the object. We also see some methods such as npv(),
eq_val(), irr(), dollar_weighted_yield(), and time_weighted_yield(), which we’ll explore
in the subsequent sections.

Note that we can also supply an Accumulation or Rate object to the argument gr. The following declarations are
equivalent to the previous one:

In [4]: from tmval import Accumulation, Rate

In [5]: pmts = Payments(amounts=[1000, 2000, 3000], times=[1, 2, 3], gr=Accumulation(.
→˓05))

In [6]: pmts = Payments(amounts=[1000, 2000, 3000], times=[1, 2, 3], gr=Rate(.05))

This might seem superficial at first glance, but its usefulness becomes apparent if we have something more complicated
than compound interest, such as 𝑎(𝑡) = 𝑥5 + 3𝑥4 + 2𝑥 + 4

In [7]: def f(t):
...: return t ** 5 + 3 * t ** 4 + 2 * t + 4
...:

In [8]: pmts = Payments(amounts=[1000, 2000, 3000], times=[1, 2, 3],
→˓gr=Accumulation(gr=f))

3.2.2 Net Present Value

In the context of this section, we define a return at time 𝑡 to be the net cash flow of payments occurring at that time.
For example, if you have to pay someone 5,000 at time t=0, but receive 2500 from your pay check at the same time,
your return is 5,000 - 2,500 = 500.

The net present value (NPV) is the sum of the present value of a stream of returns. If we denote the undiscounted
returns as 𝑅0, 𝑅1, 𝑅2, ..., 𝑅𝑛, occurring at times 0, 𝑡1, 𝑡2, ..., 𝑡𝑛, the NPV is defined as:

𝑛∑︁
𝑘=0

𝑅𝑘𝑣(𝑡𝑘)

NPV is useful in situations when you need to evaluate the value of an investment or deal. If the NPV is positive, the
deal is worth undertaking. If it is negative, than the investment is not worth it.

3.2. Value 37

TmVal Documentation, Release v0.0.11

Examples

Suppose we are considering a potential investment where we must pay 10,000 up front, in exchange for payments of
1000 occurring at time 1, 2000 occurring at time 2, and 9000 occurring at time 3. If the effective interest rate is 10%
compounded annually, should we make the investment?

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[-10000, 1000, 2000, 9000],
...: times=[0, 1, 2, 3],
...: gr=.10
...:)
...:

In [3]: print(pmts.npv())
-676.1833208114231

The NPV is negative, so we should not make this investment.

3.2.3 Equations of Value

An equation of value is the valuation of a collection of cash flows at a desired point in time. Mathematically, the time
𝜏 equation of value is defined as: ∑︁

𝑘

𝐶𝑡𝑘

𝑎(𝜏)

𝑎(𝑡𝑘)
= 𝐵

𝑎(𝜏)

𝑎(𝑇)
,

Where the Cs are the contributions, and B represents the accumulated value of the cash flows at time T. This concept
is similar to net present value (NPV), except now we can take the value of the cash flows at any point in time. The
NPV is the time 𝜏 = 0 equation of value.

Examples

Suppose we have payments of 1,000, 2,000, 3,000, 4,000, and 5,000 occurring at times 1, 2, 3, 4, and 5. What is the
time 5 equation of value?

To calculate the equation of value, simply call the eq_val() method of the Payments class and supply the
argument t=5.

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[1000, 2000, 3000, 4000, 5000],
...: times=[1, 2, 3, 4, 5],
...: gr=.05)
...:

In [3]: print(pmts.eq_val(t=5))
16038.25625

We can use the equation of value to calculate the valuation far out in to the future. What is the time 20 equation of
value?

38 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In [4]: print(pmts.eq_val(t=20))
33342.3828667455

We can verify that the time 0 equation of value is equal to the NPV:

In [5]: print(pmts.eq_val(t=0))
12566.393436401302

In [6]: print(pmts.npv())
12566.393436401302

3.2.4 Equated Time

Suppose we have a series of contributions 𝐶𝑡𝑘 for 𝑘 = 1, 2, . . . , 𝑛. The method that solves for 𝑇 such that a single
payment of 𝐶 =

∑︀𝑛
𝑘=1 𝐶𝑡𝑘 at time 𝑇 has the same value at 𝑡 = 0 as the sequence of 𝑛 contributions is known as the

method of equated time.

Examples

Suppose we are are repaying a loan with payments of 5,000 after 5 years, 10,000 after 10 years, and 15,000 after 15
years. If we desire to replace these payments with a single payment of 30,000, such that its present value equals the
present value of the original payment plan, at what time must we make this payment? Assume the interest rate is 5%
compounded annually.

We can solve this problem using the equated_time() method of the Payments class. Declare a Payments
object with the original stream of payments and then pass c=30000 to the equated_time() method.

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[5000, 10000, 15000],
...: times=[5, 10, 15],
...: gr=.05
...:)
...:

In [3]: t = pmts.equated_time(c=30000)

In [4]: print(t)
11.316000862475944

3.2.5 Dollar-Weighted Yield

A common problem in finance is to calculate an interest rate that solves the time 𝜏 equation of value:∑︁
𝑘

𝐶𝑡𝑘(1 + 𝑖)𝜏−𝑡𝑘 = 𝐵(1 + 𝑖)𝜏−𝑇 .

This interest rate is called the internal rate of return (IRR), the yield rate or the dollar-weighted yield rate.

Not every equation of value has a yield rate, and when an equation of value has a yield rate, it is not guaranteed to be
unique.

3.2. Value 39

TmVal Documentation, Release v0.0.11

Examples

Suppose we make an investment of 10,000. In return, we will receive 5,000 at the end of 1 year, and 6,000 at the end
of two years. What is the internal rate of return?

We can solve this problem by declaring a Payments object and then calling the irr() method. If the equation of
value happens to be a polynomial, TmVal will use a function from the SciPy package to calculate the roots. Otherwise,
it will use Newton’s method.

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[-10000, 5000, 6000],
...: times=[0, 1, 2]
...:)
...:

In [3]: print(pmts.irr())
[0.0639410298049854, -1.5639410298049854]

This equation of value happens to have two solutions. If we are to restrict ourselves to positive rates, the answer is
6.394%

3.2.6 Approximate Dollar-Weighted Yield Rate

Sometimes, we would like to approximate the dollar-weighted yield rate. One such approximation is to set the
investment term to 1:

𝑗 ≈ 𝐼

𝐴 +
∑︀

𝑡∈(0,1) 𝐶𝑡(1 − 𝑡)

Where 𝐼 is the total interest earned, 𝐴 is the beginning balance, the Cs are the contributions, and the ts are contribution
times as fractions of the unit investment time. We can further simplify things by assuming that each contribution
happens at a constant time 𝑘 within the unit interval:

𝑗 ≈ 𝐼

𝐴 + 𝐶(1 − 𝑘)

Furthermore, if we assume 𝑘 = 1/2, this once more simplifies to:

𝑗 ≈ 2𝐼

𝐴 + 𝐵 − 𝐼

Examples

Suppose we make an investment of 10,000 at time 0 and 5,000 at time 1. If we withdraw 16,000 at time 2, what is the
approximate dollar-weighted yield?

We can solve this problem by calling the dw_approx() method of the Payments class:

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[10000, 5000, -16000],
...: times=[0, 1, 2]
...:)

(continues on next page)

40 Chapter 3. Usage Tutorial

https://www.scipy.org/
https://en.wikipedia.org/wiki/Newton%27s_method

TmVal Documentation, Release v0.0.11

(continued from previous page)

...:

In [3]: print(pmts.dw_approx())
Pattern: Effective Interest
Rate: 0.08
Unit of time: 2 years

What if we use k-approximation? If we set k_approx=True, k defaults to 1/2:

In [4]: from tmval import Payments

In [5]: pmts = Payments(
...: amounts=[10000, 5000, -16000],
...: times=[0, 1, 2]
...:)
...:

In [6]: print(pmts.dw_approx(k_approx=True))
Pattern: Effective Interest
Rate: 0.08
Unit of time: 2 years

What if we set k=3/4?

In [7]: from tmval import Payments

In [8]: pmts = Payments(
...: amounts=[10000, 5000, -16000],
...: times=[0, 1, 2]
...:)
...:

In [9]: print(pmts.dw_approx(k_approx=True, k=3/4))
Pattern: Effective Interest
Rate: 0.08888888888888889
Unit of time: 2 years

3.2.7 Time-Weighted Yield

The time-weighted yield is a measure of how well a fund was managed. Mathematically, it is defined as:

𝑗𝑡𝑤 =

[︃
𝑟+1∏︁
𝑘=1

(1 + 𝑗𝑘)

]︃
− 1,

effective over the investment interval, where

1 + 𝑗𝑘 =

{︃𝐵𝑡1

𝐵0
𝑘 = 1

𝐵𝑡𝑘

𝐵𝑡𝑘−1
+𝐶𝑡𝑘−1

𝑘 = 2, 3, · · · , 𝑟 + 1
.

The Bs represent the balances at points in time and the Cs represent the contributions. If we desire an annualized yield:

𝑖𝑡𝑤 = (1 + 𝑗𝑡𝑤)
1
𝑇 − 1 =

[︃
𝑟+1∏︁
𝑘=1

(1 + 𝑗𝑘)

]︃ 1
𝑇

− 1

3.2. Value 41

TmVal Documentation, Release v0.0.11

Examples

Suppose we deposit 100,000 in a bank account. It grows to 105,000 at time 1, and we immediately deposit an additional
5,000. It then grows to 115,000 at time 2. what is the time-weighted yield?

We can solve this problem by passing the balance amounts and times to the time_weighted_yield method of
the Payments() class:

In [1]: from tmval import Payments

In [2]: pmts = Payments(
...: amounts=[100000, 5000],
...: times=[0, 1]
...:)
...:

In [3]: i = pmts.time_weighted_yield(
...: balance_times=[0, 1, 2],
...: balance_amounts=[100000, 105000, 115000],
...: annual=True
...:)
...:

In [4]: print(i)
Pattern: Effective Interest
Rate: 0.0477248077273309
Unit of time: 1 year

3.3 Annuities

Annuities are financial instruments that provide a steady stream of payments over a fixed or contingent time period. In
this chapter, we’ll be going over various types of annuities and how TmVal implements them via the Annuity class.

3.3.1 Annuities-Immediate

An annuity-immediate is a type of annuity in which the payments occur at the end of each payment period. We define
a basic annuity-immediate as an annuity-immediate in which every payment equals 1.

Basic annuities-immediate are convenient because the formulas specifying their present and accumulated values can
be reduced to simple, compact algebraic expressions. For example, the present value of a basic annuity-immediate
that pays 1 for 𝑛 periods at compound effective interest rate 𝑖 per period is:

𝑎𝑛 𝑖 = 𝑣 + 𝑣2 + 𝑣3 + · · · + 𝑣𝑛 =
1 − 𝑣𝑛

𝑖

The accumulated value at time 𝑛 is:

𝑠𝑛 𝑖 = (1 + 𝑖)𝑛−1 + (1 + 𝑖)𝑛−2 + · · · + 1 =
(1 + 𝑖)𝑛 − 1

𝑖

42 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

Examples

Suppose we have a basic annuity-immediate that pays 1 at the end of each year for 5 years at an annual effective
interest rate of 5%. What is the present value?

We can solve this problem by importing the Annuity class, TmVal’s general class that can be used to represent most
types of annuities. We can specify the payment amount with the argument amount=1, the 5-year term as term=5, the
1-year payment interval as period=1, and the 5% interest rate as gr=Rate(.05).

We then use the method Annuity.pv() to get the present value:

In [1]: from tmval import Annuity, Rate

In [2]: ann = Annuity(
...: amount=1,
...: term=5,
...: period=1,
...: gr=Rate(.05)
...:)
...:

In [3]: print(ann.pv())
4.329476670630819

Note that we can simplify the above answer and make it more consistent with actuarial notation by simply supplying
the number of payments as n=5. Since the period defaults to 1 year, the amount defaults to 1, we only need to supply
two arguments in the case of a basic annuity-immediate:

In [4]: ann = Annuity(
...: n=5,
...: gr=Rate(.05)
...:)
...:

In [5]: print(ann.pv())
4.329476670630819

What is the accumulated value? We can use Annuity.sv() to find out:

In [6]: print(ann.sv())
5.525631250000002

3.3.2 Annuities-Due

An annuity-due is a type of annuity in which the payments occur at the beginning of each payment period. We define
a basic annuity-due as an annuity-due in which every payment equals 1.

The formulas for basic annuities-due are similar to those for basic annuities-immediate, except the present value of
the basic annuity-due is taken at the time of the first payment, and the accumulated value is taken at the next period
following the final payment of the annuity. In the case of compound interest:

�̈�𝑛 𝑖 = 1 + 𝑣 + 𝑣2 + 𝑣3 + · · · + 𝑣𝑛−1 =
1 − 𝑣𝑛

𝑑

𝑠𝑛 𝑖 = (1 + 𝑖)𝑛 + (1 + 𝑖)𝑛−1 + (1 + 𝑖)𝑛−2 + · · · + (1 + 𝑖)1 =
(1 + 𝑖)𝑛 − 1

𝑑

3.3. Annuities 43

TmVal Documentation, Release v0.0.11

Examples

Suppose we have a basic annuity-due that pays 1 at the beginning of each year for 5 years at an annual effective interest
rate of 5%. What is the present value?

Again we can use TmVal’s Annuity class to solve this problem. The change from the previous section’s example is
that this time, we just need to change specify that our annuity is an annuity-due by setting the argument imd=’due’.
This argument defaults to ‘immediate,’ which is why we didn’t need to set it last time:

In [1]: from tmval import Annuity, Rate

In [2]: ann = Annuity(
...: amount=1,
...: term=5,
...: period=1,
...: gr=Rate(.05),
...: imd='due'
...:)
...:

In [3]: print(ann.pv())
4.54595050416236

As before, we can also reduce the number of arguments provided by simply providing the number of payments and
interest rate, but this time also the imd argument:

In [4]: from tmval import Annuity, Rate

In [5]: ann = Annuity(
...: n=5,
...: gr=Rate(.05)
...:)
...:

In [6]: print(ann.pv())
4.329476670630819

What is the accumulated value? We can use Annuity.sv() to find out:

In [7]: print(ann.sv())
5.525631250000002

3.3.3 Perpetuities

A perpetuity is a type of annuity that has an infinite number of payments. Perpetuities come in both immediate and
due forms. For the former, the payments occur at the beginning of each period, whereas for the latter, they occur at the
end of each period. A basic perpetuity (either immediate or due), is one that pays 1 for each period.

Like annuities, perpetuities have present value formulas that can be simplified to concise algebraic expressions. This
fact can be proved via properties of infinite series. For a perpetuity-immediate:

𝑎∞ 𝑖 =
1

𝑖

For a perpetuity-due:

�̈�∞ 𝑖 =
1

𝑑
.

Unlike annuities, perpetuities do not have an accumulated value because the payments never end.

44 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

Examples

Suppose we have a perpetuity-immediate that pays 1 at the end of each year, and the annual effective interest rate is
5%. What is the present value of the annuity?

We can solve this problem by using TmVal’s Annuity class. In order to specify an infinite number of payments, we
can set either the term or n argument to be infinite. We do so by importing Numpy and setting term=np.Inf or
n=np.Inf:

In [1]: import numpy as np

In [2]: from tmval import Annuity, Rate

In [3]: ann = Annuity(
...: term=np.Inf,
...: gr=Rate(.05)
...:)
...:

In [4]: ann2 = Annuity(
...: n=np.Inf,
...: gr=Rate(.05)
...:)
...:

In [5]: print(ann.pv())
19.999999999999982

In [6]: print(ann2.pv())
19.999999999999982

For those who are unfamiliar with NumPy, NumPy is a scientific computing package that serves as the backbone of
many other popular Python tools, such as Pandas (and hopefully someday, TmVal).

3.3.4 Deferred Annuities

A deferred annuity is a type of annuity whose first payment begins more than one payment period later than its
present valuation date. For example, we can purchase a deferred annuity-immediate today that makes annual payments
beginning 5 years from now.

We denote a deferred annuity-immediate as 𝑤|𝑛𝑎, where 𝑤 indicates that the first payment will occur 𝑤 + 1 periods
from the present valuation date. For example, the annuity in the preceding paragraph would be denoted 4|𝑛𝑎 because
the first payment occurs at time 5, which is equal to 𝑤 + 1, since in this case 𝑤 = 4.

Annuities-immediate, deferred annuities-due, and deferred annuities-immediate are related by the following
expression:

𝑎𝑛 = 1|𝑛�̈� = 0|𝑛𝑎

3.3. Annuities 45

https://numpy.org/

TmVal Documentation, Release v0.0.11

Examples

Suppose we purchase an annuity-immediate deferred for 4 years. This annuity makes a payment of 1,000 each year
for a term of five years, with the first payment beginning 5 years from now. If the annual effective interest rate is 5%,
how much does the annuity cost?

We can solve this problem by using TmVal’s Annuity class, and specifying the deferral by setting the argument
deferral=4.

In [1]: from tmval import Annuity, Rate

In [2]: ann = Annuity(
...: amount=1000,
...: n=5,
...: gr=Rate(.05),
...: deferral=4
...:)
...:

In [3]: print(ann.pv())
3561.8711714816923

Now suppose we want to know, if we reinvest the payments at the 5% effective rate, how much will the investments
grow to 20 years from now?

In [4]: print(ann.eq_val(20))
9450.704605312447

3.3.5 Nonlevel Annuities

Sometimes annuities involves nonlevel payments that do not correspond to a standard annuity symbol. In this case,
TmVal’s Annuity class defaults to using methods from its parent class, Payments.

Examples

Suppose we have an annuity that makes end-of-year payments of 2000, 5000, 1000, 4000, and 8000. If interest is
governed by a compound annual effective rate of 5%, how much does this annuity cost today?

To solve this problem, simply supply the payment stream to the amount argument, amount[2000, 5000,
1000, 4000, 8000], and payment times to the ``times argument, much like we would with the
Payments class:

In [1]: from tmval import Annuity, Rate

In [2]: pmts = [2000, 5000, 1000, 4000, 8000]

In [3]: times = [x + 1 for x in range(5)]

In [4]: ann = Annuity(
...: amount=pmts,
...: times=times,
...: gr=Rate(.05)
...:)
...:

(continues on next page)

46 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

(continued from previous page)

In [5]: print(ann.pv())
16862.766126498827

How much is this annuity worth at time 3?

In [6]: print(ann.eq_val(3))
19520.75963718821

3.3.6 Nonlevel Annuities - Geometric Progression

Annuities can have payments that increase geometrically. For example, an annuity might have payments that increase
by 2% per year. If we have payments that increase by g% per year, we define the present value of an annuity-immediate
with an initial payment 𝑃 as:

𝑃

⎛⎝1 −
(︁

1+𝑔
1+𝑖

)︁𝑛

𝑖− 𝑔

⎞⎠ ,

where 𝑖− 𝑔 ̸= 0, since this expression is undefined when the denominator is 0. If the payments increase at the rate of
interest, we have:

𝑛𝑃 (1 + 𝑖)−1.

Examples

Suppose we have an annuity-immediate with end-of-year payments that pays 1 at the end of the first period, and then
whose payments increase by 2% for each year for the next 4 years. If the interest rate is 5% compounded annually,
what is its present value?

We can solve this problem by using TmVal’s Annuity class, and by providing the rate of payment increase to the
argument gprog, which in this case is gprog=.02:

In [1]: from tmval import Annuity, Rate

In [2]: ann = Annuity(
...: gr=Rate(.05),
...: n=5,
...: gprog=(.02)
...:)
...:

In [3]: print(ann.pv())
4.497460026576225

3.3. Annuities 47

TmVal Documentation, Release v0.0.11

3.3.7 Nonlevel Annuities - Arithmetic Progression

TmVal’s Annuity class can also handle annuities with increasing arithmetic progression. This means that if an
annuity makes an initial payment 𝑃 , the next payment is 𝑃 +𝑄, and the payment after that is 𝑃 + 2𝑄, and so on. The
present value of such an annuity is:

(𝐼𝑃,𝑄𝑎)𝑛 𝑖 = 𝑃 𝑎𝑛 𝑖 +
𝑄

𝑖
(𝑎𝑛 𝑖 − 𝑛𝑣𝑛).

The accumulated value is:

(𝐼𝑃,𝑄𝑠)𝑛 𝑖 = 𝑃 𝑠𝑛 𝑖 +
𝑄

𝑖
(𝑠𝑛 𝑖 − 𝑛).

The Annuity class can also handle the companion formulas for the annuity-due case:

(𝐼𝑃,𝑄𝑠)𝑛 𝑖 = 𝑃 𝑠𝑛 𝑖 +
𝑄

𝑑
(𝑠𝑛 𝑖 − 𝑛),

and

(𝐼𝑃,𝑄 �̈�)𝑛 𝑖 = 𝑃 �̈�𝑛 𝑖 +
𝑄

𝑑
(𝑎𝑛 𝑖 − 𝑛).

For special cases (𝐼𝑠)𝑛 𝑖, (𝐼𝑎)𝑛 𝑖, (𝐷𝑎)𝑛 𝑖, (𝐼𝑠)𝑛 𝑖, (𝐷�̈�)𝑛 𝑖, see the Notation Guide.

Examples

Suppose we have a 10-year annuity with an initial end-of-year payment of 100, and subsequent end-of-year payments
increasing by 100 for each of the next 9 years. If the interest is 5% compounded annually, what is the present value?

We can solve this problem by setting the aprog argument of the Annuity class to aprog=100:

In [1]: from tmval import Annuity

In [2]: ann = Annuity(
...: gr=.05,
...: amount=100,
...: n=10,
...: aprog=100
...:)
...:

In [3]: print(ann.pv())
3937.378280472917

Now, suppose instead that the annuity makes beginning-of-year payments. What is the accumulated value?

In [4]: ann2 = Annuity(
...: gr=.05,
...: amount=100,
...: n=10,
...: aprog=100,
...:)
...:

In [5]: print(ann2.sv())
6413.57432465254

The special cases mentioned earlier can be achieved by simply modifying the amount and aprog argument to be
equal to the corresponding special case values. For more information on what these symbols mean and how to derive
them, refer to a text on interest theory (some can be found in the References section).

48 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.3.8 Perpetuities - Arithmetic Progression

TmVal’s Annuity class can also handle perpetuities with payments of increasing arithmetic progression:

(𝐼𝑃,𝑄𝑎)∞ 𝑖 = 𝑃 𝑎∞ 𝑖 +
𝑄

𝑖
∞ 𝑖 =

𝑃

𝑖
+

𝑄

𝑖2

(𝐼𝑃,𝑄 �̈�)∞ 𝑖 = 𝑃 �̈�∞ 𝑖 +
𝑄

𝑖
∞ 𝑖 =

𝑃

𝑑
+

𝑄

𝑖𝑑

Examples

Suppose we have a perpetuity-immediate with an initial end-of-year payment of 100. Subsequent end-of-year
payments increase 100 each year forever. If the interest rate is 5% compounded annually, what’s the present value?

To solve this problem, we need the special value np.Inf from NumPy to specify an infinite term, passing term=np.
Inf to TmVal’s Annuity class.

In [1]: import numpy as np

In [2]: from tmval import Annuity

In [3]: ann = Annuity(
...: amount=100,
...: gr=.05,
...: term=np.Inf,
...: aprog=100
...:)
...:

In [4]: print(ann.pv())
41999.99999999993

What if we have a perpetuity-due instead?

In [5]: ann2 = Annuity(
...: amount=100,
...: gr=.05,
...: term=np.Inf,
...: aprog=100,
...: imd='due'
...:)
...:

In [6]: print(ann2.pv())
44099.99999999993

3.3.9 Nonintegral Terms

Sometimes, certain payment structures will not yield an integral number of payments for a desired present value. For
example, suppose we were to take out a loan for 10,000 at 5% interest compounded annually. If we were to pay 1,000
per year to settle the loan, solving the equation 𝐿 = 𝑄𝑎𝑟 𝑖 for 𝑟 will not result in an integer. Specifically, the formula
for solving r is:

𝑟 = −
ln

(︁
1 − 𝑖𝐿

𝑄

)︁
ln(1 + 𝑖)

,

3.3. Annuities 49

TmVal Documentation, Release v0.0.11

and for our example, 𝑟 ≈ 14.207 years.

This is problematic if we want the final payment to coincide with the payment period. Two ways to adjust for this are
to have the final payment occur on the next or previous integral period. For example, in our example, we can have the
final payment occur at time 15 or time 14. We then adjust the final payment for the appropriate time value of money
so that the present value of payments equals the present value of the loan.

If the payment is rolled forward to the next period, this payment is called the drop payment. When rolled backwards
and added to the previous payment, it is called the balloon payment.

The drop payment is equal to:

𝑄

(︂
(1 + 𝑖)𝑓 − 1

𝑖

)︂
(1 + 𝑖)1−𝑓 ,

and the balloon payment is equal to:

𝑄 + 𝑄

(︂
(1 + 𝑖)𝑓 − 1

𝑖

)︂
𝑣𝑓 .

Example

Suppose we borrow 10,000 at 5% compound annual interest, and repay it by making end-of-year payments of 1,000.
If we elect to have the final payment be a drop payment, how much is the payment, and what time does it occur on?

To solve this problem, we can set the loan and drb arguments of the Annuity class to their appropriate values.
The drb argument specifies whether we want a drop or balloon payment. We can then check the drop payment using
the drb_pmt attribute.

To check the time of the last payment, we can use the times attribute of the Annuity object and pass it to the max
function to get the result.

In [1]: from tmval import Annuity

In [2]: ann = Annuity(
...: loan=10000,
...: amount=1000,
...: gr=.05,
...: drb='drop'
...:)
...:

drop payment amount
In [3]: print(ann.drb_pmt)
210.71820588633327

drop payment time
In [4]: print(max(ann.times))
15

To get confidence, let’s confirm that the present value is equal to 10,000:

In [5]: print(ann.pv())
10000.0

What if we elect the final payment to be a balloon payment? What is the amount, and when does it occur?

50 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In [6]: ann2 = Annuity(
...: loan=10000,
...: amount=1000,
...: gr=.05,
...: drb='balloon'
...:)
...:

drop payment amount
In [7]: print(ann2.drb_pmt)
1200.6840056060316

drop payment time
In [8]: print(max(ann2.times))
14

again, check the pv
In [9]: print(ann2.pv())
10000.000000000002

3.3.10 General Accumulation Functions

The annuities supported by TmVal need not be limited to the main growth patterns supported by the Rate class.
TmVal can also handle annuities governed by more complex growth patterns, such as polynomial growth.

Examples

Suppose we have a basic, 5-year term annuity-immediate governed by the following growth pattern:

𝑎(𝑡) = .05𝑡2 + .02𝑡 + .03

What is the present value of the annuity?

We can solve this problem by defining a function for the quadratic growth pattern and then passing it to the
Accumulation class, which in turn is passed to the Annuity class:

In [1]: from tmval import Accumulation, Annuity

In [2]: def f(t):
...: return .05 * t ** 2 + .02 * t + 1
...:

In [3]: ann = Annuity(gr=Accumulation(gr=f), n=5)

In [4]: print(ann.pv())
3.36072951629534

What is the accumulated value?

In [5]: print(ann.sv())
7.897714363294049

3.3. Annuities 51

TmVal Documentation, Release v0.0.11

3.4 Loans

TmVal provides a Loan class, which can be used to calculate the outstanding balance on any date over the term of the
loan.

3.4.1 Outstanding Loan Balance - Retrospective Method

A common problem involving loans is calculating the outstanding loan balance at a point in time. One way to do this
is called the retrospective method, which first calculates the accumulated value of the principal, and then subtracts the
accumulated value of the payments. The formula for the outstanding loan balance after the 𝑘-th payment is thus:

OLB𝑘 = 𝐿𝑎(𝑘) −𝑄𝑠𝑘

The main advantage of the retrospective method is that we do not need to know the term or the total number of
payments required to settle the loan.

Examples

Suppose we have borrowed 50,000 to be paid off with annual end-of-year payments of 5,000. If the interest rate is 5%
compounded annually, what is the outstanding loan balance immediately after the 5th payment?

We can solve this problem with TmVal’s Loan class, which is its main class for performing loan calculations. First, we
need to define the loan by setting the arguments for the loan amount, amt=5000, the payment amount, pmt=5000,
the payment period, period=1, and the interest rate.

We can call the method Loan.olb_r() to apply the retrospective method to find the balance at time t=5:

In [1]: from tmval import Loan, Rate

In [2]: my_loan = Loan(
...: amt=50000,
...: pmt=5000,
...: period=1,
...: gr=Rate(.05),
...:)
...:

In [3]: print(my_loan.olb_r(t=5))
36185.921875

3.4.2 Outstanding Loan Balance - Prospective Method

Another way to calculate the outstanding loan balance at a point in time is the prospective method, which sums up
the value of the remaining loan payments, discounted to that time period. Assuming compound interest, if the last
payment is adjusted to avoid over/under payment, the outstanding loan balance calculated via the prospective method
is defined as:

OLB𝑘 = 𝑄𝑎𝑛−𝑘−1 𝑖 + 𝑅(1 + 𝑖)−(𝑛−𝑘).

If all the payments are equal, it is defined as:

OLB𝑘 = 𝑄𝑎𝑛−𝑘 𝑖.

The advantage of the prospective method is that we do not need to know the original loan amount.

52 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

Examples

Suppose we need to make 10 end-of-year payments of 5,000 to pay off a loan. Assuming the rate of interest is 5%
compounded annually, what is the outstanding loan balance immediately after the 5th payment?

We can solve this by using TmVal’s Loan class. First, we define the loan by providing the characteristics in the
preceding paragraph. Then, we call the method Loan.olb_p() to execute the prospective method:

In [1]: from tmval import Loan, Rate

In [2]: my_loan = Loan(
...: pmt=5000,
...: gr=Rate(.05),
...: period=1,
...: term=10
...:)
...:

In [3]: print(my_loan.olb_p(t=5))
21647.383353154095

Now, suppose we miss the 4th and 5th payment. What is the outstanding loan balance at time 5?

We can solve this by again calling the Loan.olb_p(), and supplying the 4th and 5th payments as a list to the
missing argument, missing=[4, 5]:

In [4]: print(my_loan.olb_p(t=5, missed=[4, 5]))
31897.383353154095

3.5 Bonds

A bond is a financial instrument that entities can use to borrow money. An entity, called a bond issuer, can issue bonds
to parties, called bondholders, who are willing to lend it money. The bond itself is a promise from the issuer to pay the
bondholders a stream of one more payments on specified dates in exchange for the amount borrowed, which is called
the initial bond price.

TmVal’s Bond class is used to define bonds. You can initialize a bond by supplying certain characteristics about the
bonds to the bond constructor:

1. Bond price

2. Coupons

3. Yield rate

4. Redemption amount

5. Face value

6. Term

The bond price is the amount a bondholder pays to acquire a bond. If purchased from the issuer, this also represents
the amount loaned to the issuer. Otherwise, it refers to the amount one pays to another bondholder for the rights to the
remaining stream of payments promised by the bond.

Coupons are regular payments made by the bond issuer to the bondholder. A bond may have zero coupons, in which
case it is referred to as a zero-coupon bond.

The yield rate on a bond is the yield rate to the bondholder if the bond is held to maturity.

3.5. Bonds 53

TmVal Documentation, Release v0.0.11

The redemption amount an amount paid on the due date of a bond, not including any coupons.

The face value is an amount used to calculate the coupon amount of a bond. Coupons are often referred to as being a
certain % of the face value.

The term is the time between when the bond is purchased and its due date, after which the bond is considered to be
repaid.

You do not have to specify all of these characteristics to initialize a bond in TmVal. Common bond problems involve
those where not all the aforementioned quantities are known, and TmVal can be used to solve for these missing
quantities.

This section explains how you can use TmVal to define bonds as well as the calculations you can perform on them.

3.5.1 Zero-Coupon Bonds

Zero-coupon bonds are bonds that do not pay any coupons. They are the simplest type of bond, in which a bond issuer
sells the bond to a bondholder. The price paid for the bond is the amount of money loaned the bond issuer from the
bondholder. At the end of a specified amount of time, the bond issuer pays a redemption amount to the bondholder to
settle the debt.

Examples

Suppose an entity issues a bond for 1,000 to be repaid in 5 years for 1,200. What is the yield rate on the bond?

Since we know the price, redemption amount, and term, we can supply these to the Bond class arguments price,
red, and term respectively. The Bond class constructor will automatically detect which argument is missing and
solve for it. We can then find the missing value (in this case the yield rate) by printing the attribute.

In [1]: from tmval import Bond

In [2]: bd = Bond(
...: price=1000,
...: red=1200,
...: term=5
...:)
...:

[-1000, 1200]

In [3]: print(bd.irr())
[0.03713728933664773]

To further illustrate how Bond can solve for missing values, here are some more examples with various missing
values.

If an entity issues a bond for 1,000 to be repaid in 5 years with a yield of 5% compounded annually, what should the
redemption amount be?

In [4]: bd = Bond(
...: price=1000,
...: gr=.05,
...: term=5
...:)
...:

In [5]: print(bd.red)
1276.2815625000003

54 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

If an entity issues a bond redeemable for 1,200 in 5 years at a yield rate of 5% compounded annually, what is the price
of the bond?

In [6]: bd = Bond(
...: red=1200,
...: gr=.05,
...: term=5
...:)
...:

In [7]: print(bd.price)
940.2313997621505

If an entity issues a bond for a price of 1,000, to be redeemed for 1,200 at a yield rate of 5% compounded annually,
what is the term of the bond?

In [8]: bd = Bond(
...: price=1000,
...: red=1200,
...: gr=.05
...:)
...:

In [9]: print(bd.term)
3.73685

3.5.2 Coupon Bonds

Coupon bonds are bonds in which the bond issuer makes payments to the bondholder in addition to the redemption
amount throughout the life of the bond.

Coupons are calculated specifying a face value 𝐹 , a coupon rate 𝛼, and the coupon frequency 𝑚. The relationship
between these values can be described by the following equation:

𝐹𝑟 =
𝐹𝛼

𝑚
.

When the face value equals the redemption amount, 𝐹 = 𝐶, we refer to the bond as being a par-value bond.

Sometimes we’d like to specify the coupon rate as a modified coupon rate 𝑔 in terms of the bond redemption amount
𝐶:

𝑔 =
𝐹𝑟

𝐶
.

We can calculate the number of coupons 𝑛 by multiplying the bond term 𝑁 in years by the coupon frequency in
number of coupons per year 𝑚:

𝑛 = 𝑁𝑚.

We are often interested in the bond’s yield to the investor, or bondholder, as a rate compounded yearly 𝑖, or as a rate 𝑗,
specified in terms of the coupon period:

𝑗 =
𝐼

𝑚

where

𝑖 =

(︂
1 +

𝐼

𝑚

)︂𝑚

− 1.

3.5. Bonds 55

TmVal Documentation, Release v0.0.11

The price 𝑃 of a bond is the present value of the coupons and the redemption amount. Using this information, we
arrive at the basic price formula for a bond:

𝑃 = (𝐹𝑟)𝑎𝑛 𝑗 + 𝐶𝑣𝑛𝑗

Another property of a bond is called the base amount 𝐺, which is the present value of a perpetuity of the coupon
payments:

𝐺 =
𝐹𝑟

𝑗

We can express the coupon amount using the face amount, redemption value, or base amount:

𝐹𝑟 = 𝐶𝑔 = 𝐺𝑗

Examples

Suppose we have a 5-year 1,000 5% bond with semiannual coupons, redeemable at par. What is the price of the bond
if the yield is 10% compounded annually?

We can use TmVal to solve for the price just like we can with a zero coupon bond, but this time we need to supply
the coupon information because this bond pays coupons. We can set the arguments alpha=.05 and cfreq=4 to
represent the coupon rate and frequency, respectively. We also need to set the face value, face=1000:

In [1]: from tmval import Bond

In [2]: bd = Bond(
...: face=1000,
...: red=1000,
...: alpha=.05,
...: cfreq=4,
...: term=5,
...: gr=.10
...:)
...:

In [3]: print(bd.price)
817.4272763857732

Alternatively, we can specify the coupon rate and frequency to the argument cgr. Since this information is equivalent
to a nominal interest rate, you can supply it to cgr instead of using alpha and cfreq:

In [4]: from tmval import Bond, Rate

In [5]: cgr = Rate(
...: rate=.05,
...: pattern="Nominal Interest",
...: freq=4
...:)
...:

In [6]: bd = Bond(
...: face=1000,
...: red=1000,
...: cgr=cgr,
...: term=5,
...: gr=.10

(continues on next page)

56 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

(continued from previous page)

...:)

...:

In [7]: print(bd.price)
817.4272763857732

Now, let’s examine various properties of this bond:

coupon amount
In [8]: print(bd.fr)
12.5

number of coupons
In [9]: print(bd.n_coupons)
20

base amount
In [10]: print(bd.g)
0.0125

coupon payments
In [11]: print(type(bd.coupons))
<class 'tmval.annuity.Annuity'>

In [12]: print(bd.coupons.amounts)
[12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
→˓12.5, 12.5, 12.5, 12.5, 12.5, 12.5]

In [13]: print(bd.coupons.times)
[0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.
→˓0, 4.25, 4.5, 4.75, 5.0]

yield per coupon period
In [14]: print(bd.j)
0.02411368908444511

Let’s use this information to verify 𝐹𝑟 = 𝐶𝑔 = 𝐺𝑗:

Fr
In [15]: fr = bd.fr

In [16]: print(bd.fr)
12.5

Cg
In [17]: cg = bd.g * bd.red

In [18]: print(cg)
12.5

Gj
In [19]: gj = bd.base * bd.j

In [20]: print(gj)
12.5

In [21]: print(fr == cg == gj)
(continues on next page)

3.5. Bonds 57

TmVal Documentation, Release v0.0.11

(continued from previous page)

True

3.5.3 Nonlevel Coupons

TmVal can handle nonlevel coupons as well. This feature can be found in some bonds that offer increasing coupon
payments to hedge against inflation.

Examples

Suppose we have a five year 1,000 bond with a redemption amount of 1,250. Annual coupons start at 5% and then
increase by 2% each year. If the bond is priced to yield 5% compounded annually, what is the price of the bond?

We can solve this problem with TmVal by providing a list of tuples to the alpha argument of the Bond class. Each
tuple in the list is an ordered pair that represents a coupon rate and the beginning of the time period in which it is
applicable.

In this case, we want [(.05, 0), (.051, 1), (.05202, 2), (.0530604,3), (.054121608, 4)].

We also need to supply a corresponding list to the cfreq argument of equal length to the list provided to alpha.
Since that list has 5 elements, and for each of those periods we have one coupon payment, we set cfreq=[1,1,1,
1,1]. While this particular example has all 1s, this feature allows us to model more complex bonds where the coupon
frequency is not the same for each period.

In [1]: from tmval import Bond

In [2]: t = 5

In [3]: alpha_r = [.05 * 1.02 ** x for x in range(t)]

In [4]: alpha_t = [x for x in range(t)]

In [5]: alphas = [(x, y) for x, y in zip(alpha_r, alpha_t)]

In [6]: bd = Bond(
...: face=1000,
...: red=1250,
...: alpha=alphas,
...: cfreq=[1] * 5,
...: gr=.05,
...: term=t
...:)
...:

coupon amounts
In [7]: print(bd.coupons.amounts)
[50.0, 51.00000000000001, 52.02, 53.06040000000001, 54.121608]

coupon times
In [8]: print(bd.coupons.times)
[1.0, 2.0, 3.0, 4.0, 5.0]

In [9]: print(bd.price)
1204.280709414385

58 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

3.5.4 Bond Premium and Discount

The bond notation can be used to rearrange the basic price formula to arrive at the premium-discount formula:

𝑃 = 𝐶(𝑔 − 𝑗)𝑎𝑛 𝑗 + 𝐶

A bond is said to sell at a premium if the price 𝑃 exceeds the redemption amount 𝐶. Equivalently this is also the case
when the modified coupon rate exceeds the yield rate per coupon period, when 𝑔 > 𝑗:

premium = 𝑃 − 𝐶 = 𝐶(𝑔 − 𝑗)𝑎𝑛 𝑗 .

A bond is said to sell at a discount if the price 𝑃 is less than the redemption amount 𝐶. Equivalently, this is also the
case when the yield rate per coupon period exceeds the modified coupon rate, when 𝑗 > 𝑔:

discount = 𝐶 − 𝑃 = 𝐶(𝑗 − 𝑔)𝑎𝑛 𝑗 .

Examples

Suppose we have a 5-year, 1,000 5% par value bond with annual coupons, priced to yield 8% compounded annually.
Find out if the bond sells at a premium or discount, and compute the magnitude of premium or discount.

TmVal’s Bond class has an attribute called premium that represents the magnitude of the premium or discount. It is
positive if the bond sells at a premium and negative if it sells at a discount. Since 𝑗 > 𝑔 for this example, we would
expect it to sell at a discount:

In [1]: from tmval import Bond

In [2]: bd = Bond(
...: face=1000,
...: red=1000,
...: alpha=.05,
...: cfreq=1,
...: term=5,
...: gr=.08
...:)
...:

In [3]: print(bd.price)
880.2186988876571

In [4]: print(bd.price < bd.red)
True

In [5]: print(bd.premium)
-119.78130111234293

Now, to see that the bond sells at a premium when 𝑔 > 𝑗, let’s switch the yield and coupon percentages:

In [6]: from tmval import Bond

In [7]: bd = Bond(
...: face=1000,
...: red=1000,
...: alpha=.08,
...: cfreq=1,
...: term=5,

(continues on next page)

3.5. Bonds 59

TmVal Documentation, Release v0.0.11

(continued from previous page)

...: gr=.05

...:)

...:

In [8]: print(bd.price)
1129.8843001189243

In [9]: print(bd.price > bd.red)
True

In [10]: print(bd.premium)
129.88430011892433

3.5.5 Makeham’s Formula

Makeham’s formula can also be derived via bond notation and can be useful for obtaining the price of a bond when
we do not know the number of coupons:

𝑃 =
𝑔

𝑗
(𝐶 −𝐾) + 𝐾,

where 𝐾 is the present value of the redemption amount.

Examples

Suppose we have a 1,000 bond that pays 5% annual coupons. The redemption amount is 1,250 and the present value
of the redemption amount is 776.1516538. If it is priced to yield 10% compounded annually, what is the price of the
bond? Also, find the term and number of coupons.

TmVal’s Bond class has a method called makeham() which it calls internally when the term and price are missing,
and when the present value of the redemption amount is provided via the k argument. Because it is called internally,
we do not have to explicitly call this method to get the bond price.

In [1]: from tmval import Bond

In [2]: bd = Bond(
...: face=1000,
...: red=1250,
...: k=776.1516538,
...: alpha=.05,
...: cfreq=1,
...: gr=.10
...:)
...:

In [3]: print(bd.term)
5.0

In [4]: print(bd.n_coupons)
5.0

In [5]: print(bd.price)
965.690992294366

We could call makeham() anyway, just to verify:

60 Chapter 3. Usage Tutorial

TmVal Documentation, Release v0.0.11

In [6]: print(bd.makeham())
965.690992294366

3.6 Pandas Compatibility

3.6. Pandas Compatibility 61

TmVal Documentation, Release v0.0.11

62 Chapter 3. Usage Tutorial

CHAPTER

FOUR

API REFERENCE

4.1 General Functions

This section documents standalone functions that do not belong to a class.

4.1.1 tmval.simple_solver

tmval.growth.simple_solver(pv: Optional[float] = None, fv: Optional[float] = None, gr:
Union[float, tmval.rate.Rate, None] = None, t: Optional[float] = None,
rate_res='Simple Interest')

Simple interest solver for when one variable is missing - returns missing value. You need to supply three out of
the four arguments, and the function will solve for the missing one.

Parameters

• pv (float) – the present value

• fv (float) – the future value

• gr (float, Rate) – the interest rate

• t (float) – the time

• rate_res (str) – if solving for a rate, whether you want simple discount or interest

Returns the present value, future value, interest rate, or time - whichever is missing.

Return type float, Rate

4.1.2 tmval.osi

tmval.growth.osi(beg_dt: datetime.datetime, end_dt: datetime.datetime, frac=True)→ float
Calculate the number of days using the ordinary simple interest or 30/360 rule. Set frac=True to return days as
a percentage of year.

Parameters

• beg_dt (datetime.datetime) – beginning date

• end_dt (datetime.datetime) – ending date

• frac (bool, optional) – whether you want the answer in number of days or fraction
of a year, defaults to True

Returns the number of days using the ordinary simple interest or 360 rule, or the percentage of year
if frac=True

63

TmVal Documentation, Release v0.0.11

Return type float

4.1.3 tmval.bankers_rule

tmval.growth.bankers_rule(beg_dt: datetime.datetime, end_dt: datetime.datetime, frac=True) →
float

Calculate the number of days using the Banker’s rule or actual/360 rule. Set frac=True to return days as a
percentage of year.

Parameters

• beg_dt (datetime.datetime) – the beginning date

• end_dt (datetime.datetime) – the ending date

• frac (bool, optional) – whether you want the answer in number of days or fraction
of a year, defaults to True

Returns the number of days or percent of a year between two dates using the Banker’s rule or
actual/360 rule, depending on frac

Return type float

4.1.4 tmval.compound_solver

tmval.growth.compound_solver(pv: Optional[float] = None, fv: Optional[float] = None, t:
Optional[float] = None, gr: Union[float, tmval.rate.Rate, None] =
None)

Solves for a missing value in the case of compound interest supply 3/4 of: a present value, a future value an
interest rate (either APY or APR), and a time. If using an APR interest rate, you need to supply a compounding
frequency of m times per period, and you need to set the use_apr parameter to True.

Parameters

• pv (float) – the present value, defaults to None.

• fv (float) – the future value, defaults to None.

• t (float) – the time, defaults to None.

Returns either a present value, a future value, an interest rate, or a time, depending on which one is
missing.

Return type float

4.1.5 tmval.k_solver

tmval.growth.k_solver(f: Callable, fv: float, t: float)→ float
Solver to get the initial investment K, given a growth pattern and future value.

Parameters

• f (Callable) – the growth pattern.

• fv (float) – the future value.

• t (float) – the time.

Returns the initial investment, K

Return type float

64 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.1.6 tmval.interest_from_discount

tmval.conversions.interest_from_discount(d: float)→ float
An interest/discount rate converter. Returns the interest rate, given the discount rate.

Parameters d (float) – the discount rate.

Returns the interest rate.

Return type float

4.1.7 tmval.discount_from_interest

tmval.conversions.discount_from_interest(i: float)→ float
An interest/discount rate converter. Returns the discount rate, given the interest rate.

Parameters i (float) – the interest rate.

Returns the discount rate.

Return type float

4.1.8 tmval.effective_from_nominal_int

tmval.conversions.effective_from_nominal_int(im: float, m: float)→ float
A nominal/effective interest rate converter. Given a NominalInt object, returns the effective interest rate.
You may also supply the nominal interest rate and compounding frequency, but not when a NominalInt is
already supplied and vice-versa.

Parameters

• im (float) – the nominal interest rate.

• m (float) – the compounding frequency.

Returns the effective interest rate.

Return type float

4.1.9 tmval.effective_from_nominal_disc

tmval.conversions.effective_from_nominal_disc(dm: float, m: float)
A nominal/effective discount rate converter. Given a NominalDisc object, returns the effective discount rate.
You may also supply the nominal discount rate and compounding frequency, but not when a NominalDisc is
already supplied and vice-versa.

Parameters

• dm (float) – the nominal discount rate.

• m (float) – the compounding frequency.

Returns the effective discount rate

Return type float

4.1. General Functions 65

TmVal Documentation, Release v0.0.11

4.1.10 tmval.apy

tmval.conversions.apy(im: float, m: float)→ float
An alias for effective_from_nominal(). Returns annual percentage yield, or annual effective yield
(APY), given a nominal rate of interest and compounding frequency.

Parameters

• im (float) – the nominal rate of interest

• m (float) – the compounding frequency, i.e., compounded m times per year

Returns the annual percentage yield, or annual effective yield (APY)

Return type float

4.1.11 tmval.apr

tmval.conversions.apr(i: float, m: float)→ tmval.conversions.RateTemplate
An alias for nominal_from_eff(). Returns annual percentage rate, or nominal interest rate (APR), given
an effective rate of interest and compounding frequency of the desired nominal rate.

Parameters

• i (float) – the effective rate of interest

• m (float) – the desired compounding frequency, i.e., compounded m times per year

Returns the annual percentage rate, or nominal rate of interest (APR)

Return type float

4.1.12 tmval.eff_int_from_eff_int

tmval.conversions.eff_int_from_eff_int(i: float, old_t: float, new_t: float) →
tmval.conversions.RateTemplate

Parameters

• i (float) – the effective interest rate.

• old_t (float) – the old unit of time.

• new_t (float) – the new unit of time.

Returns a converted interest rate, based off the new unit of time.

Return type RateTemplate

4.1.13 tmval.nom_int_from_eff_int

tmval.conversions.nom_int_from_eff_int(i: float, new_m: float, old_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective interest rate and desired compounding
frequency, returns the nominal interest rate.

Parameters

• i (float) – the effective interest rate.

• new_m (float,) – the desired compounding frequency.

66 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

• old_t (float, optional) – the interval of the effective interest rate. Assumed to be
1 if not provided.

Returns the nominal interest rate.

Return type RateTemplate

4.1.14 tmval.eff_disc_from_eff_int

tmval.conversions.eff_disc_from_eff_int(i: float, old_t: float = None, new_t: float = None)
→ tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective interest rate and applicable unit of time,
along with a desired unit of time for the new rate, returns an effective discount rate at the new unit of time. If
old_t or new_t are not provided, they are each assumed to be 1, i.e., a 1-year period.

Parameters

• i (float) – the effective interest rate

• old_t (float, optional) – the old unit of time, defaults to None.

• new_t (float, optional) – the new unit of time, defaults to None.

Returns an effective discount rate at the new unit of time.

Return type RateTemplate

4.1.15 tmval.nom_disc_from_eff_int

tmval.conversions.nom_disc_from_eff_int(i: float, new_m: float, old_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective interest rate and unit of time, along with
a desired compounding frequency, returns a nominal discount rate at the desired compounding frequency. If no
unit of time (applicable to the effective interest rate) is provided, it is assumed to be 1, i.e., a 1-year period.

Parameters

• i (float) – the effective interest rate.

• new_m (float) – the desired compounding frequency.

• old_t (float, optional) – the unit of time applicable to the effective interest rate,
defaults to None.

Returns a nominal discount rate, compounded new_m times per year.

Return type RateTemplate

4.1.16 tmval.eff_int_from_eff_disc

tmval.conversions.eff_int_from_eff_disc(d: float, old_t: float = None, new_t: float = None)
→ tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective discount rate and unit of time, along
with a desired new unit of time, returns an effective interest rate at the new unit of time. If no unit of time (either
old or new) is provided, it is assumed to be 1, i.e., a 1-year period.

Parameters

• d (float) – the effective discount rate.

4.1. General Functions 67

TmVal Documentation, Release v0.0.11

• old_t (float, optional) – the old unit of time, defaults to None.

• new_t (float, optional) – the new unit of time, defaults to None.

Returns an effective interest rate, at the new unit of time.

Return type RateTemplate

4.1.17 tmval.eff_disc_from_eff_disc

tmval.conversions.eff_disc_from_eff_disc(d: float, old_t: float, new_t: float) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective discount rate and unit of time, along
with a desired new unit of time, returns an effective discount rate at the desired new unit of time. period.

Parameters

• d (float) – the effective discount rate.

• old_t (float) – the old unit of time.

• new_t (float) – the new unit of time.

Returns an effective discount rate at the new unit of time.

Return type RateTemplate

4.1.18 tmval.nom_int_from_eff_disc

tmval.conversions.nom_int_from_eff_disc(d: float, new_m: float, old_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective discount rate and unit of time, along
with a desired compounding frequency, returns a nominal interest rate at the desired compounding frequency. If
no unit of time is provided (applicable to the effective discount rate), it is assumed to be 1, i.e., a 1-year period.

Parameters

• d (float) – the effective discount rate.

• new_m (float) – the desired compounding frequency.

• old_t (float, optional) – the old unit of time, defaults to None.

Returns a nominal interest rate, compounded new_m times per year

Return type RateTemplate

4.1.19 tmval.nom_disc_from_eff_disc

tmval.conversions.nom_disc_from_eff_disc(d: float, new_m: float, old_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given an effective discount rate and unit of time, along with
a desired compounding frequency, returns a nominal discount rate at the desired compounding frequency. If no
unit of time is provided (applicable to the effective discount rate), it is assumed to be 1, i.e., a 1-year period.

Parameters

• d (float) – the effective discount rate.

• new_m (float) – the desired compounding frequency.

68 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

• old_t (float, optional) – the old unit of time, defaults to None.

Returns a nominal discount rate, compounded new_m times per year.

Return type RateTemplate

4.1.20 tmval.eff_int_from_nom_int

tmval.conversions.eff_int_from_nom_int(im: float, m: float, new_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal interest rate, along with a desired unit of
time, returns an effective interest rate at the desired unit of time. If no unit of time is provided, it is assumed to
be 1, i.e., a 1-year period.

Parameters

• im (float) – the nominal interest rate.

• m (float) – the compounding frequency.

• new_t (float, optional) – the desired unit of time, defaults to None.

Returns an effective interest rate.

Return type RateTemplate

4.1.21 tmval.nom_int_from_nom_int

tmval.conversions.nom_int_from_nom_int(im: float, m: float, new_m: float) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal interest rate, along with a desired
compounding frequency, returns a nominal interest rate at the desired compounding frequency.

Parameters

• im (float) – the nominal interest rate.

• m (float) – the compounding frequency

• new_m (float) – the desired compounding frequency.

Returns a nominal interest rate, compounded new_m times per year.

Return type RateTemplate

4.1.22 tmval.eff_disc_from_nom_int

tmval.conversions.eff_disc_from_nom_int(im: float, m: float, new_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal interest rate, along with a desired unit of
time, returns an effective discount rate at the desired unit of time. If no unit of time is provided, it is assumed to
be 1, i.e., a 1-year period.

Parameters

• im (float) – the nominal interest rate.

• m (float) – the compounding frequency

• new_t (float, optional) – the desired unit of time.

4.1. General Functions 69

TmVal Documentation, Release v0.0.11

Returns an effective discount rate.

Return type RateTemplate

4.1.23 tmval.nom_disc_from_nom_int

tmval.conversions.nom_disc_from_nom_int(im: float, m: float, new_m: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal interest rate, along with a desired
compounding frequency, returns an nominal discount rate at the desired compounding frequency.

Parameters

• im (float) – the nominal interest rate.

• m (float) – the compounding frequency

• new_m (float) – the desired compounding frequency.

Returns a nominal discount rate, compounded new_m times per year

Return type RateTemplate

4.1.24 tmval.eff_int_from_nom_disc

tmval.conversions.eff_int_from_nom_disc(dm: float, m: float, new_t: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal discount rate, along with a desired unit of
time, returns an effective interest rate at the desired unit of time. If no unit of time is provided, it is assumed to
be 1, i.e., a 1-year period.

Parameters

• dm (float) – the nominal discount rate.

• m (float) – the compounding frequency.

• new_t (float) – the desired unit of time, defaults to None.

Returns an effective interest rate.

Return type RateTemplate

4.1.25 tmval.nom_int_from_nom_disc

tmval.conversions.nom_int_from_nom_disc(dm: float, m: float, new_m: float = None) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal discount rate, along with a desired
compounding frequency, returns a nominal interest rate at the desired compounding frequency.

Parameters

• dm (float) – the nominal discount rate.

• m (float) – the compounding frequency.

• new_m (float) – the desired compounding frequency.

Returns a nominal interest rate, compounded new_m times per year

Return type RateTemplate

70 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.1.26 tmval.eff_disc_from_nom_disc

tmval.conversions.eff_disc_from_nom_disc(dm: float, m: float, new_t: float) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal discount rate, along with a desired unit of
time, returns an effective discount rate at the desired unit of time.

Parameters

• dm (float) – the nominal discount rate.

• m (float) – the compounding frequency.

• new_t (float) – the desired unit of time.

Returns an effective discount rate, at the desired unit of time.

Return type RateTemplate

4.1.27 tmval.nom_disc_from_nom_disc

tmval.conversions.nom_disc_from_nom_disc(dm: float, m: float, new_m: float) →
tmval.conversions.RateTemplate

A nominal/effective interest/discount rate converter. Given a nominal discount rate, along with a desired
compounding frequency, returns an nominal discount rate at the desired compounding frequency.

Parameters

• dm (float) – the nominal discount rate.

• m (float) – the compounding frequency.

• new_m (float) – the desired compounding frequency.

Returns a nominal discount rate, compounded new_m times per year.

Return type RateTemplate

4.1.28 tmval.get_loan_pmt

tmval.annuity.get_loan_pmt(loan_amt: float, period: float, term: float, gr: Union[float,
tmval.rate.Rate, tmval.growth.TieredTime], imd: str = 'immediate',
gprog: float = 0.0, aprog: float = 0.0, cents=False)→ dict

Returns the loan payment schedule, given a loan amount, payment period, term, growth rate, and geometric or
arithmetic progression of payments. If cents is set to True, uses the Daniel and Vaaler rounding algorithm to
round each payment to cents, modifying the final payment such that there is no over/under payment of the loan
due to rounding issues.

Parameters

• loan_amt (float) – The loan amount to be repaid.

• period (float) – The payment frequency, per fraction of a year.

• term (float) – The term of the loan, in years.

• gr (Accumulation, Callable, float, Rate) – Some kind of growth rate
object specifying the interest rate

• imd (str) – ‘immediate’ or ‘due’. Whether the payments occur at the end or beginning of
each period, defaults to ‘immediate’.

4.1. General Functions 71

TmVal Documentation, Release v0.0.11

• gprog (float) – geometric progression, payments grow at a % of the previous payment
per period, defaults to 0.

• aprog (float) – arithmetic progression, payments grow by a constant amount each
period, defaults to 0.

• cents (bool) – Whether you want payments rounded to cents.

Returns a dictionary of payment amounts along with the times of the payments

Return type dict

4.1.29 tmval.get_loan_amt

tmval.annuity.get_loan_amt(down_pmt: float, loan_pmt: float, period: float, term: float, gr:
tmval.rate.Rate)→ float

Returns a loan amount, given a set of characteristics that defines an annuity.

Parameters

• down_pmt (float) – A down payment amount, reduces the loan amount.

• loan_pmt (float) – The periodic loan payment amount.

• period (float) – The payment period, as a fraction of a year.

• term (float) – The term of the loan, in years.

• gr (Rate) – A growth rate object

Returns A loan amount whose present value is equal to the annuity generated from the other
arguments.

Return type float

4.1.30 tmval.get_savings_pmt

tmval.annuity.get_savings_pmt(fv: float, period: float, term: float, gr: Union[float,
tmval.rate.Rate], cents=False)→ Union[float, tuple]

Returns the savings payments, made at regular installments specified by period, that grow to the desired future
value. When cents is set to True, rounds the payments to the next cent, except for the last payment which is
adjusted so that the desired future value is reached without over/under payment.

Parameters

• fv (float) – The desired future value.

• period (float) – The payment period, as a fraction of a year.

• term (float) – The amount of time required to reach the desired future value, in years.

• gr (Rate) – A growth rate object.

• cents (bool) – Whether you want the payments rounded up to the next cent, except the
final one.

Returns A payment amount.

Return type float, or tuple if cents is True

72 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.1.31 tmval.get_number_of_pmts

tmval.annuity.get_number_of_pmts(pmt: float, fv: float, period: float, gr: tmval.rate.Rate)→ int
Given payment information represented by an annuity, calculates the number of payments required to reach a
desired future value.

Parameters

• pmt (float) – The payment amount.

• fv (float) – The desired future value.

• period (float) – The payment period, as a fraction of a year.

• gr (Rate) – A growth rate object.

Returns The number of payments.

Return type int

4.1.32 tmval.olb_r

tmval.annuity.olb_r(loan: float, q: float, period: float, gr: Union[tmval.growth.Accumulation, float,
tmval.rate.Rate], t)→ float

Calculates the outstanding loan balance using the retrospective method.

Parameters

• loan (float) – The loan amount.

• q (float) – The payment amount.

• period (float) – The payment period.

• gr (Accumulation, float, or Rate) – A growth rate object.

• t (float) – The valuation time.

Returns The outstanding loan balance.

Return type float

4.1.33 tmval.olb_p

tmval.annuity.olb_p(q: float, period: float, term: float, gr: Union[tmval.growth.Accumulation, float,
tmval.rate.Rate], t: float, r: float = None, missed: list = None)→ float

Calculates the outstanding loan balance using the retrospective method.

Parameters

• q (float) – The payment amount.

• period (float) – The payment period.

• term (float) – The loan term, in years.

• gr (Accumulation, float, or Rate.) – A growth rate object.

• t (float) – The valuation time, in years.

• r (float, optional) – The final payment amount, if different from the others, defaults
to None.

4.1. General Functions 73

TmVal Documentation, Release v0.0.11

• missed (list) – A list of missed payments, for example, 4th and 5th payments would be
[4, 5].

Returns The outstanding loan balance.

Return type float

4.1.34 tmval.get_perpetuity_gr

tmval.annuity.get_perpetuity_gr(amount: float, pv: float, period: float, imd: str = 'immediate')
→ tmval.rate.Rate

Given a payment amount, payment frequency, and present value, returns a compound annual effective interest
rate.

Parameters

• amount (float) – The payment amount.

• pv (float) – The present value.

• period (float) – The payment period, as a fraction of a year.

• imd (str) – Whether the perpetuity is ‘immediate’ or ‘due’.

Returns The annual effective interest rate.

Return type Rate

4.1.35 tmval.get_perpetuity_pmt

tmval.annuity.get_perpetuity_pmt(gr: tmval.rate.Rate, pv: float, period: float, imd: str =
'immediate')→ float

Given an interest rate, present value, and payment period, returns the payment amount of a perpetuity.

Parameters

• gr (Rate) – A growth rate object.

• pv (float) – The present value.

• period (float) – The payment period.

• imd (str) – Whether the perpetuity is ‘immediate’ or ‘due’.

Returns The payment amount.

Return type float

4.1.36 tmval.standardize_rate

tmval.rate.standardize_rate(gr: Union[float, tmval.rate.Rate])→ tmval.rate.Rate
Given a float or Rate object, standardizes it to be simple or compound effective interest with an interval of one
year. If a float is given, returns a Rate object representing a compound effective interest rate with an interval of
one year.

If a Rate is given that represents a simple interest or discount rate, returns a simple interest Rate object with an
interval of one year.

If a Rate is given that represents a compound rate (effective interest, nominal interest, effective discount, nominal
discount, force of interest), returns a compound effective interest Rate object with an interval of one year.

74 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

Parameters gr (float, Rate) – A growth rate object.

Returns A standardized interest rate.

Return type Rate

4.1.37 tmval.read_iym

tmval.growth.read_iym(table: dict, t0: float, t: float)→ tmval.rate.Rate
Reads a value from a table of interest rates using the investment year method. A table might look something
like this:

iym_table = { 2000: [.06, .065, .0575, .06, .065], 2001: [.07, .0625, .06, .07, .0675], 2002: [.06, .06, .0725, .07,
.0725], 2003: [.0775, .08, .08, .0775, .0715] }

Parameters

• table (dict) – A table of interest rates as a dictionary, with years as the keys.

• t0 (float) – The initial investment time.

• t (float) – The desired lookup time for which the rate applies.

Returns An interest rate applicable to the desired lookup time.

Return type Rate

4.1.38 tmval.tt_iym

tmval.growth.tt_iym(table: dict, t0: float)→ tmval.growth.TieredTime
Reads an investment year method table and returns a TieredTime object. This object can then be passed to an
Amount or an Accumulation class to represent a series of interest rates applicable to an investment. A table
might look something like this:

iym_table = { 2000: [.06, .065, .0575, .06, .065], 2001: [.07, .0625, .06, .07, .0675], 2002: [.06, .06, .0725, .07,
.0725], 2003: [.0775, .08, .08, .0775, .0715] }

Parameters

• table (dict) – A table of interest rates.

• t0 (float) – The year of the initial investment.

Returns A TieredTime growth rate object.

Return type TieredTime

4.1.39 tmval.standardize_acc

tmval.growth.standardize_acc(gr: Union[tmval.growth.Accumulation, float, tmval.rate.Rate,
tmval.growth.TieredTime])→ tmval.growth.Accumulation

Returns an compound accumulation object. Usually used to enable more complex classes and functions to
accept several different objects to indicate a compound interest growth rate.

Parameters gr (Accumulation, float, Rate, or TieredTime) – A growth rate
object.

Returns an Accumulation object

Return type Accumulation

4.1. General Functions 75

TmVal Documentation, Release v0.0.11

4.1.40 tmval.simple_interval_solver

tmval.growth.simple_interval_solver(s: float, es: float)→ float
Finds the interval at which the simple interest rate equals es

Parameters

• s (float) – A simple interest rate.

• es (float) – The desired simple interest rate.

Returns The desired interval.

Return type float

4.1.41 tmval.pairwise

tmval.value.pairwise(iterable: Iterable)→ Iterator
Helper function to enable pairwise iteration.

Parameters iterable (iterable) – An iterable object.

Returns An iterator.

Return type Iterator

4.1.42 tmval.time_weighted_yield

tmval.value.time_weighted_yield(balance_times: list, balance_amounts: list, payments:
tmval.value.Payments = None, payment_times: list = None,
payment_amounts: list = None, annual: bool = False) →
tmval.rate.Rate

Given a list of balances and payments, returns the time-weighted yield. If annual is set to True, returns the rate
as an annual rate. Otherwise, the rate is effective over the investment term.

You may supply a Payments object, or specify the components separately.

Parameters

• balance_times (list) – A list of balance times.

• balance_amounts (list) – A list of balance amounts, corresponding to the balance
times.

• payments (Payments) – A Payments object.

• payment_times (list) – A list of payment times.

• payment_amounts (list) – A list of payment amounts, corresponding to the payment
times.

• annual (bool, defaults to False) – Whether you want the time-weighted yield
to be annualized.

Returns The time-weighted yield.

Return type Rate

76 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.1.43 tmval.parse_cgr

bond.parse_cgr(cfreq: Union[float, list] = None, cgr: Union[tmval.rate.Rate, tmval.growth.TieredTime]
= None)→ dict

Parses the coupon-related arguments provided to the Bond class. It returns a dictionary containing items that are
used to calculate other features of the bond - alpha, cfreq, and cgr. This is used to improve the flexibility of the
arguments one may supply to specify coupons.

This function can for example, extract the rate and frequency components out of the cgr argument and supply
them to alpha and cfreq, respectively. Or, it can take the alpha and cfreq values to calculate cgr.

It also handles the case where alpha and cfreq are not constant throughout the term of the bond, in which case
cgr is calculated to be a TieredTime and vice versa.

Parameters

• alpha (float, list) – When supplied as a float, a nominal coupon rate. When
supplied as a list of tuples of the form [(x1, y_1), (x2, y2), . . .], represents a series of
coupon rates x supplied during periods beginning at time y. For example alpha=[(.05, 0),
(.04, 2)] means a 5% coupon rate the first two years and a 4% rate after that.

• cfreq (float, list) – The coupon frequency, or a list of coupon frequencies. When
supplied as a list, alpha must also be supplied as a list and each element in cfreq needs to
correspond to a tuple in alpha.

• cgr (Rate, TieredTime) – A nominal rate representing the coupon rate and frequency.

Returns A dictionary containing the alpha, cfreq, and cgr values.

Return type dict

4.1.44 tmval.rate_from_earned

growth.rate_from_earned(iey: Tuple[float, float])→ tmval.rate.Rate
Given the amount of interest earned in two time periods, calculates the annualized effective interest rate.

Parameters

• iex (Tuple[float, float]) – Interest earned in period x, provided as (interest
earned, period x).

• iey (Tuple[float, float]) – Interest earned in period y, provided as (interest
earned, period y).

Returns An annualized effective interest rate.

Return type Rate

4.1. General Functions 77

TmVal Documentation, Release v0.0.11

4.1.45 tmval.rate_from_intdisc

growth.rate_from_intdisc(dex: Tuple[float, float], x0=array([0.001, 0.01109091, 0.02118182,
0.03127273, 0.04136364, 0.05145455, 0.06154545, 0.07163636,
0.08172727, 0.09181818, 0.10190909, 0.112, 0.12209091, 0.13218182,
0.14227273, 0.15236364, 0.16245455, 0.17254545, 0.18263636,
0.19272727, 0.20281818, 0.21290909, 0.223, 0.23309091, 0.24318182,
0.25327273, 0.26336364, 0.27345455, 0.28354545, 0.29363636,
0.30372727, 0.31381818, 0.32390909, 0.334, 0.34409091, 0.35418182,
0.36427273, 0.37436364, 0.38445455, 0.39454545, 0.40463636,
0.41472727, 0.42481818, 0.43490909, 0.445, 0.45509091, 0.46518182,
0.47527273, 0.48536364, 0.49545455, 0.50554545, 0.51563636,
0.52572727, 0.53581818, 0.54590909, 0.556, 0.56609091, 0.57618182,
0.58627273, 0.59636364, 0.60645455, 0.61654545, 0.62663636,
0.63672727, 0.64681818, 0.65690909, 0.667, 0.67709091, 0.68718182,
0.69727273, 0.70736364, 0.71745455, 0.72754545, 0.73763636,
0.74772727, 0.75781818, 0.76790909, 0.778, 0.78809091, 0.79818182,
0.80827273, 0.81836364, 0.82845455, 0.83854545, 0.84863636,
0.85872727, 0.86881818, 0.87890909, 0.889, 0.89909091, 0.90918182,
0.91927273, 0.92936364, 0.93945455, 0.94954545, 0.95963636,
0.96972727, 0.97981818, 0.98990909, 1.0]), precision=5)→ list

Given interest earned over a time period on an unknown investment amount, and discount earned over a time
period, on that same amount„ solves for an annualized compound interest rate.

Parameters

• iex (Tuple[float, float]) – The interest earned over a time interval.

• dex (Tuple[float, float]) – The discount earned over a time interval.

• x0 – A starting guess or list of guesses for Newton’s method, defaults to np.linspace(.001,
1, 100).

• precision (int) – rounding precision used to remove duplicates from Newton’s method,
defaults to 5.

Returns a list of interest rates, if found.

Return type list

78 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.1.46 tmval.amt_from_intdisc

growth.amt_from_intdisc(dex: Tuple[float, float], x0: Union[float, numpy.ndarray] = array([0.001,
0.01109091, 0.02118182, 0.03127273, 0.04136364, 0.05145455,
0.06154545, 0.07163636, 0.08172727, 0.09181818, 0.10190909,
0.112, 0.12209091, 0.13218182, 0.14227273, 0.15236364, 0.16245455,
0.17254545, 0.18263636, 0.19272727, 0.20281818, 0.21290909, 0.223,
0.23309091, 0.24318182, 0.25327273, 0.26336364, 0.27345455,
0.28354545, 0.29363636, 0.30372727, 0.31381818, 0.32390909,
0.334, 0.34409091, 0.35418182, 0.36427273, 0.37436364, 0.38445455,
0.39454545, 0.40463636, 0.41472727, 0.42481818, 0.43490909, 0.445,
0.45509091, 0.46518182, 0.47527273, 0.48536364, 0.49545455,
0.50554545, 0.51563636, 0.52572727, 0.53581818, 0.54590909,
0.556, 0.56609091, 0.57618182, 0.58627273, 0.59636364, 0.60645455,
0.61654545, 0.62663636, 0.63672727, 0.64681818, 0.65690909, 0.667,
0.67709091, 0.68718182, 0.69727273, 0.70736364, 0.71745455,
0.72754545, 0.73763636, 0.74772727, 0.75781818, 0.76790909,
0.778, 0.78809091, 0.79818182, 0.80827273, 0.81836364, 0.82845455,
0.83854545, 0.84863636, 0.85872727, 0.86881818, 0.87890909,
0.889, 0.89909091, 0.90918182, 0.91927273, 0.92936364, 0.93945455,
0.94954545, 0.95963636, 0.96972727, 0.97981818, 0.98990909, 1.0]),
precision: int = 5)→ tmval.growth.Amount

Given interest earned over a time period on an unknown investment amount, and discount earned over a time
period, on that same amount, generates an Amount object.

For example, if you can earn 500 in interest in two years, and the discount in one year is 200, you can supply
iex=[400, 2], dex=[200,1]

Parameters

• iex (Tuple[float, float]) – The interest earned over a time interval.

• dex (Tuple[float, float]) – The discount earned over a time interval.

• x0 – A starting guess or list of guesses for Newton’s method, defaults to np.linspace(.001,
1, 100).

• precision (int) – rounding precision used to remove duplicates from Newton’s method,
defaults to 5.

Returns An amount function.

Return type Amount

4.1. General Functions 79

TmVal Documentation, Release v0.0.11

4.1.47 tmval.k_from_intdisc

growth.k_from_intdisc(dex: Tuple[float, float], x0: Union[float, numpy.ndarray] = array([0.001,
0.01109091, 0.02118182, 0.03127273, 0.04136364, 0.05145455, 0.06154545,
0.07163636, 0.08172727, 0.09181818, 0.10190909, 0.112, 0.12209091,
0.13218182, 0.14227273, 0.15236364, 0.16245455, 0.17254545, 0.18263636,
0.19272727, 0.20281818, 0.21290909, 0.223, 0.23309091, 0.24318182,
0.25327273, 0.26336364, 0.27345455, 0.28354545, 0.29363636, 0.30372727,
0.31381818, 0.32390909, 0.334, 0.34409091, 0.35418182, 0.36427273,
0.37436364, 0.38445455, 0.39454545, 0.40463636, 0.41472727, 0.42481818,
0.43490909, 0.445, 0.45509091, 0.46518182, 0.47527273, 0.48536364,
0.49545455, 0.50554545, 0.51563636, 0.52572727, 0.53581818, 0.54590909,
0.556, 0.56609091, 0.57618182, 0.58627273, 0.59636364, 0.60645455,
0.61654545, 0.62663636, 0.63672727, 0.64681818, 0.65690909, 0.667,
0.67709091, 0.68718182, 0.69727273, 0.70736364, 0.71745455, 0.72754545,
0.73763636, 0.74772727, 0.75781818, 0.76790909, 0.778, 0.78809091,
0.79818182, 0.80827273, 0.81836364, 0.82845455, 0.83854545, 0.84863636,
0.85872727, 0.86881818, 0.87890909, 0.889, 0.89909091, 0.90918182,
0.91927273, 0.92936364, 0.93945455, 0.94954545, 0.95963636, 0.96972727,
0.97981818, 0.98990909, 1.0]), precision: int = 5)→ float

Given interest earned over a time period on an unknown investment amount, and discount earned over a time
period, on that same amount, solves for the amount.

Parameters

• iex (Tuple[float, float]) – The interest earned over a time interval.

• dex (Tuple[float, float]) – The discount earned over a time interval.

• x0 – A starting guess or list of guesses for Newton’s method, defaults to np.linspace(.001,
1, 100).

• precision (int) – rounding precision used to remove duplicates from Newton’s method,
defaults to 5.

Returns The investment amount.

Return type float

4.2 Amount

class tmval.growth.Amount(gr: Union[Callable, tmval.rate.Rate, float], k: float)
The Amount class is an implementation of the amount function, which describes how much an invested amount
of money grows over time.

The amount function’s methods can return things like the valuation of an investment after a specified time, and
effective interest and discount rates over an interval.

The accumulation function, which is a special case of the amount function where k=1, can be extracted from the
amount function using the get_accumulation() method.

Parameters

• gr (Callable, float, Rate) – a growth object, which can either be a function that
must take the parameters t for time and k for principal, or a Rate object representing an
interest rate.

• k (float) – the principal, or initial investment.

80 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

Returns An amount object, which can be used like an amount function in interest theory.

Return type Amount

4.2.1 tmval.Amount.val

Amount.val(t: float)→ float
Calculates the value of the investment at a point in time.

:param t:evaluation date. The date at which you would like to know the value of the investment. :type t: float
:return: the value of the investment at time t. :rtype: float

4.2.2 tmval.Amount.interest_earned

Amount.interest_earned(t1: float, t2: float)→ float
Calculates the amount of interest earned over a time period.

Parameters

• t1 (float) – beginning of the period.

• t2 (float) – end of the period.

Returns The amount of interest earned over the time period.

Return type float

4.2.3 tmval.Amount.effective_rate

Amount.effective_rate(n: Union[float, int])→ tmval.rate.Rate
Calculates the effective interest rate for the n-th time period.

Parameters n (float, int) – the n-th time period.

Returns the effective interest rate for the n-th timer period.

Return type float

4.2.4 tmval.Amount.effective_interval

Amount.effective_interval(t2: float, t1: float = 0, annualized: bool = False)→ tmval.rate.Rate
Calculates the effective interest rate over a time period.

Parameters

• t1 (float) – the beginning of the period.

• t2 (float) – the end of the period.

• annualized – whether you want the results to be annualized.

Returns the effective interest rate over the time period.

Return type float

Rtype annualized bool

4.2. Amount 81

TmVal Documentation, Release v0.0.11

4.2.5 tmval.Amount.discount_interval

Amount.discount_interval(t1: float, t2: float)→ float
Calculates the effective discount rate over a time period.

Parameters

• t1 (float) – the beginning of the time period.

• t2 (float) – the end of the time period.

Returns the effective discount rate over the time period.

Return type float

4.2.6 tmval.Amount.effective_discount

Amount.effective_discount(n: int)→ float
Calculates the effective discount rate for the n-th time period.

Parameters n (int) – the n-th time period.

Returns the effective discount rate for the n-th time period.

Return type float

4.2.7 tmval.Amount.get_accumulation

Amount.get_accumulation()→ tmval.growth.Accumulation
Extracts the accumulation function, a special case of the amount function where k=1.

Returns the accumulation function.

Return type Accumulation

4.3 Accumulation

class tmval.growth.Accumulation(gr: Union[Callable, float, tmval.rate.Rate])
Special case of Amount function where k=1, Accepts an accumulation amount function, can return valuation at
time t and effective interest rate on an interval

Parameters gr (Callable, float, Rate) – a growth object, which can either be a function
that must take the parameters t for time and k for principal, or a Rate object representing an
interest rate.

Returns an accumulation object.

Return type Accumulation

82 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.3.1 tmval.Accumulation.val

Accumulation.val(t: float)→ float
Calculates the value of the investment at a point in time.

Parameters t (float) – evaluation date. The date at which you would like to know the value of
the investment.

Returns the value of the investment at time t.

Return type float

4.3.2 tmval.Accumulation.discount_func

Accumulation.discount_func(t: float, fv: Optional[float] = None)→ float
The discount function is the reciprocal of the accumulation function. Returns the discount factor at time t, which
can be used to get the present value of an investment.

Parameters

• t (float) – the time at which you would like to get the discount factor.

• fv (float, optional) – float: the future value. Assumed to be 1 if not provided.

Returns the discount factor at time t

Return type float

4.3.3 tmval.Accumulation.future_principal

Accumulation.future_principal(fv: float, t1: float, t2: float)→ float
Finds the principal needed at t1 to get fv at t2.

Parameters

• fv (float) – future value.

• t1 (float) – time of investment.

• t2 (float) – time of goal.

Returns amount of money needed at t1 to get fv at t2.

Return type float

4.4 TieredBal

class tmval.growth.TieredBal(tiers: list, rates: list)
TieredBal is a callable growth pattern for tiered investment accounts. A tiered investment account is one
where the interest paid varies depending on the balance. For example, 1% for the first $1000, 2% for the next
$4000, and 3% afterward.

To create a TieredBal, supply a list of tiers and a corresponding list of interest rates for those tiers. The tiers
are the lower bounds for the intervals corresponding to the interest rate (the first value will usually be 0).

Parameters

• tiers (list) – a list of tiers, for example [0, 1000, 5000].

4.4. TieredBal 83

TmVal Documentation, Release v0.0.11

• rates (list) – a list of interest rates, for example [.01, .02, .03].

Returns a TieredBal object.

Return type TieredBal

4.4.1 tmval.TieredBal.get_jump_times

TieredBal.get_jump_times(k: float)→ list
Calculates the times at which the interest rate is expected to change for the account, assuming an initial
investment of k and no further investments.

Parameters k (float) – the principal, or initial investment.

Returns a list of times at which the interest rate is expected to change for the account.

Return type list

4.5 TieredTime

class tmval.growth.TieredTime(tiers: list, rates: list)
TieredTime is a callable growth pattern for investment accounts in which the interest rate can vary depending
on how long the account stays open. For example, 1% for the first year, 2% for the next year, and 3% afterward.

To create a TieredTime, supply a list of tiers and a corresponding list of interest rates for those tiers. The
tiers are the lower bounds for the intervals corresponding to the interest rate (the first value will usually be 0).

Parameters

• tiers (list) – a list of tiers, for example [0, 1, 2].

• rates (list) – a list of interest rates, for example [.01, .02, .03].

Returns a TieredTime object.

Return type TieredTime

4.6 SimpleLoan

class tmval.growth.SimpleLoan(principal: float, term: float, discount_amt: Optional[float] =
None, discount_rate: Optional[float] = None)

A callable growth pattern for a simple loan, which is a lump sum loan to be paid back with a single payment
with interest, and possibly no explicit rate given. A common type of informal loan between two people outside
the banking system.

You should supply a discount amount, a discount rate, but not both.

Parameters

• principal (float) – the initial investment.

• term (float) – the term of the loan.

• discount_amt (float) – the discount amount, defaults to None.

• discount_rate (float) – the discount_rate, defaults to None.

Returns a SimpleLoan object when initialized, the value when called.

84 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

Return type SimpleLoan when initialized, float when called.

4.7 Annuity

class tmval.annuity.Annuity(gr: Union[tmval.growth.Accumulation, Callable, float,
tmval.rate.Rate], amount: Union[float, int, list, Callable] =
1.0, period: float = 1, term: float = None, n: float = None, gprog:
float = 0.0, aprog: Union[float, int, tuple] = 0.0, times: list =
None, reinv: [<class 'tmval.growth.Accumulation'>, typing.Callable,
<class 'float'>, <class 'tmval.rate.Rate'>] = None, deferral: float =
0.0, imd: str = 'immediate', loan: float = None, drb: str = None)

Annuity is TmVal’s general class for representing all kinds of annuities. Among the supported types are:

1. Annuity-immediate

2. Annuity-due

3. Perpetuity-immediate

4. Perpetuity-due

5. Deferred annuity

6. Annuity with arithmetic progression

7. Annuity with geometric progression

8. Perpetuity with arithmetic progression

9. Perpetuity with geometric progression

10. Annuity with reinvested proceeds at a different growth rate

By tweaking the arguments, you can represent more types of annuities that you might find in actuarial literature.

The Annuity class comes with methods to solve for the present value, accumulated value, and equation of value
at periods other than 0 or end-of-term. You do not have to provide overlapping time-related arguments. For
example, if you provide the period and number of payments, the term can be inferred. Likewise, if you provide
the term and period, the number of payments can be inferred.

Parameters

• gr (Accumulation, Callable, float, Rate.) – A growth rate object.

• amount (float, int, list) – A payment amount, defaults to 1. Can also provide a
list for non-level payments.

• period (float) – The payment period, defaults to 1.

• term (float) – The annuity term.

• n (float) – The number of payments.

• aprog (float) – Arithmetic progression of payments defaults to 0.

• gprog (float) – Geometric progression of payments, defaults to 0.

• times (list) – Payment times, usually left blank but can be provided for nontraditional
annuities, defaults to None

• reinv (Accumulation, Callable, float, Rate) – A reinvestment rate, if
proceeds are reinvested at a rate other than provided to gr.

• deferral (float) – A time period in years to indicate a deferred annuity.

4.7. Annuity 85

TmVal Documentation, Release v0.0.11

• imd (str) – Whether the annuity is ‘immediate’ or ‘due’, defaults to ‘immediate’.

• loan (float, optional) – An amount that allows you to represent an annuity as a
loan from which the payments can be inferred, defaults to None.

• drb (str, optional) – Whether the final loan payment is a ‘drop’ or ‘balloon’
payment.

4.7.1 tmval.Annuity.pv

Annuity.pv()→ float
Calculates the present value of the annuity. The formula used to calculate the present value will depend on the
type of annuity that gets inferred from the arguments provided to the parent class. Several classes of annuities
come with shortcut formulas which will be used in favor of just the standard npv or equation of value formulas
to improve computation speed:

1. Annuity-immediate: 𝑎𝑛 𝑖

2. Annuity-due: �̈�𝑛 𝑖

3. Perpetuity-immediate: 𝑎∞ 𝑖

4. Perpetuity-due: �̈�∞ 𝑖

5. Arithmetically increasing annuity-immediate: (𝐼𝑃,𝑄𝑎)𝑛 𝑖

6. Arithmetically increasing annuity-due: (𝐼𝑃,𝑄 �̈�)𝑛 𝑖

7. Arithmetically increasing perpetuity-immediate: (𝐼𝑃,𝑄𝑎)∞ 𝑖

8. Arithmetically increasing perpetuity-due: (𝐼𝑃,𝑄𝑎)∞ 𝑖

9. Geometrically increasing annuity-immediate

10. Geometrically increasing annuity-due

11. Geometrically increasing perpetuity-immediate

12. Geometrically increasing perpetuity-due

Returns The present value of the annuity.

Return type float

4.7.2 tmval.Annuity.sv

Annuity.sv()
Calculates the accumulated value of the annuity. The formula used to calculate the accumulated value will
depend on the type of annuity that gets inferred from the arguments provided to the parent class. Several classes
of annuities come with shortcut formulas which will be used in favor of the equation of value formula to improve
computation speed:

1. Annuity-immediate: 𝑠𝑛 𝑖

2. Annuity-due: 𝑠𝑛 𝑖

3. Perpetuity-immediate: 𝑠∞ 𝑖

4. Perpetuity-due: 𝑠∞ 𝑖

86 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

5. Arithmetically increasing annuity-immediate: (𝐼𝑃,𝑄𝑠)𝑛 𝑖

6. Arithmetically increasing annuity-due: (𝐼𝑃,𝑄𝑠)𝑛 𝑖

7. Arithmetically increasing perpetuity-immediate: (𝐼𝑃,𝑄𝑠)∞ 𝑖

8. Arithmetically increasing perpetuity-due: (𝐼𝑃,𝑄𝑠)∞ 𝑖

9. Geometrically increasing annuity-immediate

10. Geometrically increasing annuity-due

11. Geometrically increasing perpetuity-immediate

12. Geometrically increasing perpetuity-due

Returns The accumulated value of the annuity.

Return type float

4.7.3 tmval.Annuity.get_r_pmt

Annuity.get_r_pmt(gr: Union[tmval.growth.Accumulation, Callable, float, tmval.rate.Rate])→ float
When inferring the number of payment periods, returns the number of payment periods as if fractional periods
were allowed. This fractional value helps calculate the drop or balloon payments, if needed.

Parameters gr (Accumulation, Callable, float, or Rate) – A growth rate object.

Returns The number of payment periods.

Return type float

4.7.4 tmval.Annuity.get_drop

Annuity.get_drop(gr)→ float
If the number of payment periods does not settle to an integral number, calculates the drop payment.

Parameters gr (Accumulation, Callable, float, or Rate) – A growth rate object.

Returns The drop payment.

Return type float

4.7.5 tmval.Annuity.get_balloon

Annuity.get_balloon(gr)→ float
If the number of payment periods does not settle to an integral number, calculates the balloon payment.

Parameters gr (Accumulation, Callable, float, or Rate) – A growth rate object.

Returns The balloon payment.

Return type float

4.7. Annuity 87

TmVal Documentation, Release v0.0.11

4.8 Payments

class tmval.value.Payments(amounts: Union[list, Iterable, Callable], times: Union[list,
Iterable, Callable], gr: Union[float, tmval.rate.Rate,
tmval.growth.Accumulation, tmval.growth.TieredBal,
tmval.growth.TieredTime] = None)

A collection of payments, and corresponding growth object. If no growth object (an interest rate, Rate object,
Accumulation object) is provided, the payments are assumed to be undiscounted. The payments class serves
as the backbone for major types of financial instruments, such as annuities and bonds. It provides methods for
calculating net present value, internal rate of return (dollar weighted yield), equated time, equated value, and
time-weighted yield.

Parameters

• amounts (list, Iterable, Callable) – a list of payment amounts.

• times (list, Iterable, Callable) – a list of payment times.

• gr (float, Rate, or Accumulation) – a growth rate object, can be supplied as a
float, a Rate object, or an Accumulation object.

4.8.1 tmval.Payments.equated_time

tmval.value.Payments.equated_time(self, c: float)→ float
Method of equated time. Finds 𝑇 so that a single payment of 𝐶 =

∑︀𝑛
𝑘=1 𝐶𝑡𝑘 at time 𝑇 has the same value at

𝑡 = 0 as the sequence of 𝑛 contributions.

While this method is formally defined to have C equal the sum of the contributions, it actually works when C is
not equal to the sum of the contributions.

Parameters c (float) – The single payment C.

Returns The time T.

Return type float

4.8.2 tmval.Payments.irr

tmval.value.Payments.irr(self, x0: float = 1.05)→ list
Calculates the internal rate of return, also known as the yield rate or dollar-weighted return. If the payment
amounts and times result in a polynomial equation of value, the yield is solved by calculating the roots of the
polynomial via the NumPy roots function. If the equation of value is not a polynomial, than Newton’s method
from the SciPy package is used.

Parameters x0 (float) – A starting guess when using Newton’s method, defaults to 1.05.

Returns A list of real roots, if found.

Return type list

88 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.8.3 tmval.Payments.dw_approx

tmval.value.Payments.dw_approx(self, a: float = None, b: float = None, w_t: float = None,
k_approx: bool = False, k: float = 0.5, annual: bool = False)→
tmval.rate.Rate

Calculates the approximate dollar-weighted yield rate by standardizing the investment time to 1:

𝑗 ≈ 𝐼

𝐴 +
∑︀

𝑡∈(0,1) 𝐶𝑡(1 − 𝑡)

Where A is the beginning balance, I is interest earned, and the Cs are the contributions. When k_approx is set
to true, k is assumed to be a fixed constant within the investment window:

𝑗 ≈ 𝐼

𝐴 + 𝐶(1 − 𝑘)

The default value for k is 1/2, simplifying the above expression to:

j approx frac{2I}{A + B - I}

Where B is the withdrawal balance. When arguments a, b, and w_t (corresponding to A, B, and the the
withdrawal time) are not provided, a is assumed to be the first payment in the parent object, and b is calculated
to be the last.

Parameters

• a (float) – The initial balance.

• b (float) – The withdrawal balance.

• w_t (float) – The withdrawal time.

• k_approx (bool) – Whether you want to use the k-approximation formula.

• k (float) – The value for k in the k-approximation formula, defaults to .5.

• annual (bool) – Whether you want the results annualized.

Returns The approximate dollar-weighted yield rate.

Return type Rate

4.9 Rate

class tmval.rate.Rate(rate: float = None, pattern: str = None, freq: float = None, interval: float =
None, i: float = None, d: float = None, delta: float = None, s: float = None,
sd: float = None)

The Rate class is TmVal’s core class for representing interest rates. The magnitude of the rate is specified via
the rate argument.

The type of interest rate is indicated by providing a value to the pattern argument. Valid patterns are:

1. Effective Interest

2. Effective Discount

3. Nominal Interest

4. Nominal Discount

5. Force of Interest

6. Simple Interest

4.9. Rate 89

TmVal Documentation, Release v0.0.11

7. Simple Discount

For Effective Interest, Effective Discount, Simple Interest, and Simple Discount, an additional argument called
interval is used to denote the effective interval. These rates can be created via shortcut arguments i, d, s, and
sd. When a shortcut argument is used, the interval defaults to 1 and is not strictly necessary, unless the interval
happens to be different.

If you just want to initialize an annual Effective Interest rate, you do not need to use the argument i, simply pass
a float object to the Rate class, as in gr=Rate(.05) to define a 5% annually compounded effective interest rate.

For the force of interest, use the shortcut argument delta.

For Nominal Interest and Nominal Discount, you need to provide the compounding frequency via the freq
argument.

The compound patterns - Effective Interest, Effective Discount, Nominal Interest, Nominal Discount, and Force
of Interest can be converted to each other.

Simple Interest can be converted to another Simple Interest with a different interval. Simple Discount can be
converted to another Simple Discount with a different interval. Simple Interest and Simple Discount cannot be
converted to each other because they do not correspond to the same accumulation function.

Compound patterns cannot be converted to simple patterns.

The Rate class mimics arithmetic types, so you may perform arithmetic operations on rate objects with other
arithmetic types.

Parameters

• rate (float) – The magnitude of the rate.

• pattern (str) – The interest rate pattern.

• freq (float) – The compounding frequency, in times per year.

• interval (float) – The effective interval of the interest rate, in years.

• i (float) – Shortcut argument for Effective Interest.

• d (float) – Shortcut argument for Effective Discount.

• delta (float) – Shortcut argument for Force of Interest.

• s (float) – Shortcut argument for Simple Interest.

• sd (float) – Shortcut argument for Simple Discount.

4.9.1 tmval.Rate.convert_rate

Rate.convert_rate(pattern, freq: float = None, interval: float = None)
Converts the rate to the desired pattern.

The compound patterns - Effective Interest, Effective Discount, Nominal Interest, Nominal Discount, and Force
of Interest can be converted to each other.

Simple Interest can be converted to another Simple Interest with a different interval. Simple Discount can be
converted to another Simple Discount with a different interval. Simple Interest and Simple Discount cannot be
converted to each other because they do not correspond to the same accumulation function.

Compound patterns cannot be converted to simple patterns.

Parameters

• pattern (str) – The pattern to which you want to convert the rate.

90 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

• freq (float) – The compounding frequency, times per year.

• interval (float) – The effective interval, in years.

Returns A rate object.

Return type Rate

4.9.2 tmval.Rate.amt_func

Rate.amt_func(k, t)
A Callable intended to be used by the Amount class when the parent Rate object is passed to it. This allows an
Amount object to be declared by passing a Rate object to it.

Parameters

• k (float) – The principal.

• t (float) – The valuation time, in years.

Returns The value of k at time t.

Return type float

4.9.3 tmval.Rate.acc_func

Rate.acc_func(t)
A Callable intended to be used by the Accumulation class when the parent Rate object is passed to it. This
allows an Accumulation object to be declared by passing a Rate object to it.

Parameters t (float) – The valuation time, in years.

Returns The value of 1 invested at time 0, at time t.

Return type float

4.9.4 tmval.Rate.standardize

Rate.standardize()
Used to put rates on a common basis for comparison. The following patterns will be converted to Effective
Interest compounded annually:

1. Effective Interest

2. Effective Discount

3. Nominal Interest

4. Nominal Discount

5. Force of Interest

The following patterns will be converted to Simple Interest effective over a 1-year interval:

1. Simple Interest

The following patterns will be converted to Simple Discount effective over a 1-year interval:

1. Simple Discount

Returns A standardized Rate object.

4.9. Rate 91

TmVal Documentation, Release v0.0.11

Return type Rate

4.10 Bond

class tmval.bond.Bond(face: float = None, term: float = None, red: float = None, gr: Union[float,
tmval.rate.Rate] = None, cgr: tmval.rate.Rate = None, alpha: Union[float,
list] = None, cfreq: Union[float, list] = None, price: float = None, pd: float =
None, k: float = None, fr: float = None)

Bond is TmVal’s class for representing bonds. Bonds can be initialized if the arguments contain enough
information to calculate:

1. Bond price (price)

2. Coupons (alpha and cfreq or cgr)

3. Yield rate (gr)

4. Redemption amount (red)

5. Face value (face)

6. Term (term)

When one of these values is absent, the initialization will be able to solve for the missing quantity. When two
values are missing, you can still initialize the bond under certain cases:

1. Missing price and redemption amount - can be solved if premium/discount is supplied.

2. Missing price and term - can be solved if Makeham’s k is supplied.

3. Missing price and coupon rate - can be solved if coupon amount is supplied.

Coupon information is usually supplied by specifying an alpha amount for the nominal coupon rate and cfreq
for the coupon frequency. Alternatively, you may supply a nominal interest rate with a compounding frequency
to the argument cgr. It’s possible to specify a coupon amount via fr and the coupon frequency of cfreq if you do
not know alpha but know the coupon amount.

Parameters

• face (float) – The face value.

• red (float) – The redemption amount.

• gr (float, Rate) – The yield rate used to price the bond.

• cgr (Rate) – A nominal rate representing the coupon rate and frequency.

• alpha (float, list) – When supplied as a float, a nominal coupon rate. When
supplied as a list of tuples of the form [(x1, y_1), (x2, y2), . . .], represents a series of
coupon rates x supplied during periods beginning at time y. For example alpha=[(.05, 0),
(.04, 2)] means a 5% coupon rate the first two years and a 4% rate after that.

• cfreq (float, list) – The coupon frequency, or a list of coupon frequencies. When
supplied as a list, alpha must also be supplied as a list and each element in cfreq needs to
correspond to a tuple in alpha.

• price (float) – The bond price.

• pd (float) – The bond premium or discount.

• k (float) – The present value of the redemption amount, used if instantiating from
Makeham’s formula.

92 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

• fr (float) – The coupon amount per period. Can be supplied with cfreq instead of alpha.

4.10.1 tmval.Bond.get_coupon_times

Bond.get_coupon_times()→ list
Calculates the times at which the coupon payments occur.

Returns A list of coupon payment times.

Return type list

4.10.2 tmval.Bond.get_coupon_amt

Bond.get_coupon_amt()→ Union[float, list]
Calculates the coupon amount, or a list of coupon amounts and time periods in which they are applicable if they
are not level. In the case of non-level coupons, the list takes the form of [(x1, y1), (x2, y2), . . .] Where the
x values represent the coupon amounts and the y values represent the lower bound of the interval in which the
coupon amount is applicable. For example, [(50, 0), (60, 2)] means that coupon payments of 50 happen in the
first two periods and coupon payments of 60 happen afterwards.

Returns A coupon amount, or list of coupon amounts.

Return type float or list

4.10.3 tmval.Bond.get_redemption

Bond.get_redemption()→ float
Calculates the redemption amount.

Returns The redemption amount.

Return type float

4.10.4 tmval.Bond.get_n_coupons

Bond.get_n_coupons()→ int
Calculates the number of coupons.

Returns The number of coupons.

Return type int

4.10.5 tmval.Bond.get_coupons

Bond.get_coupons()→ tmval.annuity.Annuity
Calculates the coupons and returns them as an Annuity object.

Returns The bond coupons.

Return type Annuity

4.10. Bond 93

TmVal Documentation, Release v0.0.11

4.10.6 tmval.Bond.get_coupon_intervals

Bond.get_coupon_intervals()→ list
Calculates the time intervals between coupon payments.

Returns The time intervals between coupon payments.

Return type list

4.10.7 tmval.Bond.makeham

Bond.makeham()→ float
Calculates the bond price using Makeham’s formula.

Returns The bond price.

Return type float

4.10.8 tmval.Bond.base_amount

Bond.base_amount()→ float
Calculates the base amount of the bond. The base amount is the investment needed to produce a perpetuity of
the coupon payments.

Returns The base amount.

Return type float

4.10.9 tmval.Bond.balance

Bond.balance(t: float, n: int = None)→ float
Calculates the bond balance at time t, where t must coincide with a payment time. Alternatively, if you’d like to
know the balance just prior to the n-th coupon payment, you may supply the value to the argument n.

Parameters

• t (float) – The balance time.

• n (int) – The n-th coupon payment.

Returns The bond balance.

Return type float

4.10.10 tmval.Bond.am_prem

Bond.am_prem(t: float)→ float
Calculates the amortized premium in the last coupon payment prior to time t.

Parameters t (float) – The valuation time.

Returns The amortized premium.

Return type float

94 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.10.11 tmval.Bond.acc_disc

Bond.acc_disc(t: float)→ float
Calculates the accumulation of discount in the last coupon prior to time t.

Parameters t (float) – The valuation time.

Returns The accumulation of discount.

Return type float

4.10.12 tmval.Bond.am_interest

Bond.am_interest(t: float)→ float
Calculates the amortized interest in the last coupon prior to time t.

Parameters t (float) – The valuation time.

Returns The amortized interest.

Return type float

4.10.13 tmval.Bond.amortization

Bond.amortization()→ dict
Calculates the amortization table for the bond. This method returns a dictionary that can be supplied to a pandas
DataFrame.

Returns The amortization table.

Return type dict

4.10.14 tmval.Bond.dirty

Bond.dirty(t: float, tprac: str = 'theoretical', gr: Union[float, tmval.rate.Rate] = None)→ float
Calculates the dirty value of a bond. It can be toggled to switch between theoretical and practical dirty values.

Parameters

• t (float) – The valuation time.

• tprac (str) – Whether you want the practical or theoretical dirty value. Defaults to
‘theoretical’.

• gr (float, Rate) – The valuation yield, if pricing a bond at a different yield. Defaults
to the current bond yield.

Returns The dirty value.

Return type float

4.10. Bond 95

TmVal Documentation, Release v0.0.11

4.10.15 tmval.Bond.clean

Bond.clean(t: float, gr: Union[float, tmval.rate.Rate] = None, tprac: str = 'theoretical')→ float
Calculates the clean value. The argument tprac can be toggled to switch between the theoretical, semipractical,
or practical clean value.

Parameters

• t (float) – The valuation time.

• gr (float, Rate) – The valuation yield, if pricing a bond at a different yield. Defaults
to the current bond yield.

• tprac (str) – Whether you want the ‘theoretical’, ‘semipractical’, or ‘practical’ clean
value.

Returns The clean value.

Return type float

4.10.16 tmval.Bond.accrued_interest

Bond.accrued_interest(t: float, gr: Union[float, tmval.rate.Rate] = None, tprac: str = 'theoretical')
→ float

Calculates the accrued interest in a coupon payment. Can be toggled between the clean or practical values.

Parameters

• t (float) – The valuation time.

• gr (float, Rate) – The valuation yield, if pricing a bond at a different yield. Defaults
to the current bond yield.

• tprac (str) – Whether you want the ‘theoretical’ or ‘practical’ value.

Returns The accrued interest.

Return type float

4.10.17 tmval.Bond.yield_s

Bond.yield_s(t: float, sale: float)→ list
Calculates the yield from the perspective of the person to whom you are selling the bond.

Parameters

• t (float) – The valuation time.

• sale (float) – The sale price.

Returns The yield to the person to whom you are selling the bond.

Return type list

96 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.10.18 tmval.Bond.yield_j

Bond.yield_j(t: float, sale: float)→ list
Calculates the yield to the bondholder should they sell the bond at time t.

Parameters

• t (float) – The valuation time.

• sale (float) – The sale price.

Returns The yield to the bondholder.

Return type list

4.10.19 tmval.Bond.sale_prem

Bond.sale_prem(t: float, gr: Union[float, tmval.rate.Rate])→ float
Calculates the sale premium.

Parameters

• t (float) – The valuation time.

• gr (float, Rate) – The valuation yield.

Returns The sale premium.

Return type float

4.10.20 tmval.Bond.last_coupon_amt

Bond.last_coupon_amt(t: float)→ float
Calculates the amount of the last coupon paid out prior to time t.

Parameters t (float) – The valuation time.

Returns The last coupon amount

Return type float

4.10.21 tmval.Bond.next_coupon_amt

Bond.next_coupon_amt(t: float)→ float
Returns the amount of the next coupon payment after time t.

Parameters t (float) – The valuation time.

Returns The next coupon amount.

Return type float

4.10. Bond 97

TmVal Documentation, Release v0.0.11

4.10.22 tmval.Bond.last_coupon_t

Bond.last_coupon_t(t: float)→ float
Returns the time of the last coupon payment prior to time t.

Parameters t (float) – The valuation time.

Returns The time of the last coupon.

Return type float

4.10.23 tmval.Bond.next_coupon_t

Bond.next_coupon_t(t: float)→ float
Returns the time of the next coupon payment following time t.

Parameters t (float) – The valuation time.

Returns The time of the next coupon.

Return type float

4.10.24 tmval.Bond.coupon_bound_t

Bond.coupon_bound_t(t: float)→ tuple
Returns the time boundaries of the last and next coupons around time t.

Parameters t (float) – The valuation time.

Returns The coupon time boundaries.

Return type tuple

4.10.25 tmval.Bond.coupon_f

Bond.coupon_f(t: float)→ float
Calculates the fraction of a coupon period between time t and the time of the last coupon payment prior to time
t.

Parameters t (float) – The valuation time.

Returns The fraction of a coupon period.

Return type float

4.10.26 tmval.Bond.adj_principal

Bond.adj_principal(t: float, gr: Union[float, tmval.rate.Rate] = None, tprac: str = 'theoretical') →
float

Calculates the adjustment to principal in the accrued interest for a coupon.

Parameters

• t (float) – The valuation time.

• gr (float, Rate) – The valuation rate, if different from the yield.

• tprac (str) – Whether you want to use ‘theoretical’ or ‘practical’ values.

98 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

Returns The adjustment to principal in the accrued interest.

Return type float

4.10.27 tmval.Bond.interest_on_accrued

Bond.interest_on_accrued(t: float, gr: Union[float, tmval.rate.Rate] = None, tprac: str =
'theoretical')→ float

Calculates the interest on accrued interest for a coupon.

Parameters

• t (float) – The valuation time.

• gr (float, Rate) – The valuation rate, if different from the yield.

• tprac (str) – Whether you want to use ‘theoretical’ or ‘practical’ values.

Returns The interest on accrued interest.

Return type float

4.10.28 tmval.Bond.yield_c

Bond.yield_c(times: list = None, premiums: list = None)→ list
Calculates the yields given a list of call times.

Parameters

• times (list) – A list of call times.

• premiums (list) – A list of call premiums.

Returns Yield rates for the corresponding call times.

Return type list

4.10.29 tmval.Bond.prior_coupons

Bond.prior_coupons(t: float)→ tmval.value.Payments
Gets the coupons prior to the time t.

Parameters t (float) – The valuation time.

Returns The coupons prior to the time t.

Return type Payments

4.10.30 tmval.Bond.term_floor

Bond.term_floor()→ bool
Calculates whether the term provided coincides with bond issuance or a coupon payment.

Returns Whether the term provided coincides with bond issuance or a coupon payment.

Return type bool

4.10. Bond 99

TmVal Documentation, Release v0.0.11

4.11 Loan

class tmval.loan.Loan(gr: Union[float, tmval.rate.Rate, tmval.growth.TieredTime] = None, pmt:
Union[float, int, tmval.value.Payments] = None, period: float = None, term:
float = None, amt: float = None, cents: bool = False, sfr: Union[float,
tmval.rate.Rate, tmval.growth.TieredTime] = None, sfd: float = None, sf_split:
float = 1.0, sfh_gr: Union[float, tmval.rate.Rate, tmval.growth.TieredTime] =
None, pp: float = None)

Loan is TmVal’s class for representing loans. TmVal currently supports amortized loans, sinking fund loans,
amortized/sinking hybrid loans, and payment of fixed principal loans. You can specify the loan type by supplying
the appropriate argument.

The default case is an amortized loan, when gr, period, term, and payment amount are supplied without a
corresponding sinking fund rate or fixed principal payment. You do not have to supply all of the arguments. If
enough of them are supplied, the missing arguments are automatically calculated.

For sinking fund loans, specify the amount of the sinking fund deposit and the sinking fund rate.

For fixed principal loans, the payment is a fixed amount of principal which can be supplied with the argument
pp.

Parameters

• gr (float, Rate, TieredTime) – The interest rate of the loan.

• period (float) – The time interval between payments, if the loan has regular payments.

• term (float) – The term of the loan.

• amt (float) – The loan amount.

• cents (bool) – Whether you want the payments to be rounded to cents. Defaults to False.

• sfr (float, Rate, TieredTime) – The sinking fund rate, if different from the loan
interest rate.

• sfd (float) – The sinking fund deposit amount.

• sf_split (float) – If using a hybrid amortized/sinking loan, the % of the loan that is a
sinking fund loan.

• sfh_gr (float, Rate, TieredTime) – In the case of a hybrid loan, the loan interest
rate of the sinking fund portion, if it differs from the amortization rate.

• pp (float) – The principal payment, in the case of a fixed principal loan.

4.11.1 tmval.Loan.get_payments

Loan.get_payments()→ tmval.value.Payments
Takes the arguments supplied and creates the payment schedule for the loan. The return type is a Payments
object, so it contains the payment times and amounts.

Returns The payment schedule.

Return type Payments

100 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.11.2 tmval.Loan.olb_r

Loan.olb_r(t: float, payments: tmval.value.Payments = None)→ float
Calculates the outstanding loan balance at time t, using the retrospective method. If the actual payments differ
from the original payment schedule, they may be supplied to the payments argument.

Parameters

• t (float) – The valuation time.

• payments (Payments) – A list of payments, if they differed from the original payment
schedule.

Returns The outstanding loan balance.

Return type float

4.11.3 tmval.Loan.olb_p

Loan.olb_p(t: float, r: float = None, missed: List[int] = None)→ float
Calculates the outstanding loan balance via the prospective method. If there were missed payments, they may
be indicated by supplying them to the missed argument.

Parameters

• t (float) – The valuation time.

• r (float) – The final payment amount, if different from the others, defaults to None.

• missed (List[int]) – A list of missed payments, for example, 4th and 5th payments
would be [4, 5].

Returns The outstanding loan balance.

Return type float

4.11.4 tmval.Loan.principal_paid

Loan.principal_paid(t2: float, t1: float = 0)→ float
Calculates the principal paid between two points in time..

Parameters

• t2 (float) – The second point in time.

• t1 (float) – The first point in time.

Returns The principal paid.

Return type float

4.11. Loan 101

TmVal Documentation, Release v0.0.11

4.11.5 tmval.Loan.total_payments

Loan.total_payments(t2: float, t1: float = 0)→ float
Calculates the total loan payments that occurred between two points in time.

Parameters

• t2 (float) – The second point in time.

• t1 (float) – The first point in time.

Returns The total loan payments.

Return type float

4.11.6 tmval.Loan.interest_paid

Loan.interest_paid(t2: float, t1: float = 0, frac: bool = False)→ float
Calculates the total interest paid between two points in time.

Parameters

• t2 (float) – The second point in time.

• t1 (float) – The first point in time.

• frac (bool) – Whether you want the answer as a fraction of the total interest of the loan.

Returns The total interest paid.

Return type float

4.11.7 tmval.Loan.principal_val

Loan.principal_val(t: float)→ float
Calculates the time-value adjusted principal at a desired point in time.

Parameters t (float) – The valuation time.

Returns The time-value adjusted principal.

Return type float

4.11.8 tmval.Loan.amortization

Loan.amortization()→ dict
Calculates the amortization table based off the original payment schedule. Returned as a dict which can be
supplied to a pandas DataFrame for further analysis and viewing.

Returns The amortization table.

Return type dict

102 Chapter 4. API Reference

TmVal Documentation, Release v0.0.11

4.11.9 tmval.Loan.sf_final

Loan.sf_final(payments: tmval.value.Payments = None)→ float
Calculates the final payment required to settle a sinking fund loan. You may supply payments, if they differed
from the original payment schedule.

Parameters payments (Payments, optional) – A list of payments, if different from the
original payment schedule.

Returns The final sinking fund payment.

Return type float

4.11.10 tmval.Loan.sink_payments

Loan.sink_payments(payments: tmval.value.Payments)→ dict
Calculates a sinking fund schedule for a list of payments. Intended to be called externally only if the payments
differ from the original sinking fund schedule. Otherwise, use the sinking() method. The return type is a
dict which can be passed to a pandas DataFrame for further analysis and viewing.

Parameters payments (Payments) – A list of payments.

Returns The sinking fund schedule for the payments.

Return type dict

4.11.11 tmval.Loan.sinking

Loan.sinking()→ dict
Calculates the sinking fund schedule based off the original payment schedule. The return type is a dict which
can be passed to a pandas DataFrame for further analysis and viewing.

Returns The sinking fund schedule.

Return type dict

4.11.12 tmval.Loan.rc_yield

Loan.rc_yield()→ list
Calculates the yield rate based off replacement of capital.

Returns The yield rate based off replacement of capital.

Return type list

4.11.13 tmval.Loan.fixed_principal

Loan.fixed_principal()→ tmval.value.Payments
Calculates the loan payment schedule if a fixed amount of principal is paid each period.

Returns The payment schedule.

Return type Payments

4.11. Loan 103

TmVal Documentation, Release v0.0.11

4.11.14 tmval.Loan.hybrid_principal

Loan.hybrid_principal()→ float
Calculates the loan amount based on a hybrid amortized/sinking fund loan.

Returns The loan amount.

Return type float

4.11.15 tmval.Loan.sgr_equiv

Loan.sgr_equiv()→ tmval.rate.Rate
Calculates the sinking fund rate such that would produce a loan payment schedule equivalent to that of an
amortized loan.

Returns The sinking fund rate.

Return type Rate

104 Chapter 4. API Reference

CHAPTER

FIVE

NOTATION GUIDE

TmVal is intended to provide a more natural connection to actuarial notation than other time value of money packages
from general areas of finance. By providing the main actuarial financial instruments as classes, TmVal makes it easier
to represent and manipulate them in ways that more easily match actuarial theory.

This guide shows how common actuarial symbols can be replicated in TmVal. These are written in pseudocode and
not meant to be executed directly, and serve as a guide as to what classes and functions correspond to which symbols.

Amount function: 𝐴𝐾(𝑡)

Amount(gr, k).val(t)

Accumulation function: 𝑎(𝑡)

Accumulation(gr).val(t)

Effective interest rate for the interval: 𝑖[𝑡1,𝑡2] = 𝑎(𝑡2)−𝑎(𝑡1)
𝑎(𝑡1)

Accumulation(gr).effective_interval(t1, t2)

or, assuming proportionality:

Amount(gr, k).effective_interval(t1, t2)

Effective interest for the n-th time period: 𝑖𝑛 = 𝑎(𝑛)−𝑎(𝑛−1)
𝑎(𝑛−1)

Amount(gr, k).effective_rate(n)

Simple interest amount function: 𝐴𝐾(𝑡) = 𝐾(1 + 𝑠𝑡)

Amount(gr=Rate(s), k).val(t)

Compound interest accumulation function: 𝑎(𝑡) = (1 + 𝑖)𝑡

Accumulation(gr=Rate(i)).val(t)

or

Accumulation(gr=i).val(t)

Effective discount rate for the interval: 𝑑[𝑡1,𝑡2] = 𝑎(𝑡2)−𝑎(𝑡1)
𝑎(𝑡2)

Accumulation(gr).discount_interval(t1, t2)

or, assuming proportionality:

105

TmVal Documentation, Release v0.0.11

Amount(gr, k).discount_interval(t1, t2)

Effective discount rate for the n-th time period: 𝑑𝑛 = 𝑎(𝑛)−𝑎(𝑛−1)
𝑎(𝑛)

Accumulation(gr).effective_discount(n)

Discount function: 𝑣(𝑡) = 1
𝑎(𝑡)

Accumulation(gr).discount_func(t)

Future principal: 𝑆𝑣(𝑡2)𝑎(𝑡1) = 𝑆 𝑎(𝑡1)
𝑎(𝑡2)

= 𝑆 𝑣(𝑡2)
𝑣(𝑡1)

Accumulation(gr).future_principal(fv=S, t1, t2)

Simple discount amount function: 𝐴𝐾(𝑡) = 𝐾
(1−𝑑𝑡)

Amount(gr=Rate(sd), k).val(t)

Simple discount accumulation function: 𝑎(𝑡) = 1
(1−𝑑𝑡)

Accumulation(gr=Rate(sd), k).val(t)

Nominal interest rate of 𝑖(𝑚) convertible or compounded or payable 𝑚 times per year

Rate(
rate,
pattern="Nominal Interest",
freq=m)

Nominal discount rate 𝑑(𝑚) convertible or compounded or payable 𝑚 times per year

Rate(
rate,
pattern="Nominal Discount",
freq=m)

Force of interest: 𝛿 = lim𝑚→∞ 𝑖(𝑚) = ln(1 + 𝑖)

Rate(delta)

Accumulation function under the force of interest: 𝑎(𝑡) = 𝑒𝛿𝑡

Accumulation(gr=Rate(delta))

Time 𝜏 equation of value:
∑︀

𝑘 𝐶𝑡𝑘
𝑎(𝜏)
𝑎(𝑡𝑘)

= 𝐵 𝑎(𝜏)
𝑎(𝑇)

Payments(amounts, times, gr).eq_val(t)

Equated time: 𝑇 =
ln

(︂∑︀𝑛
𝑘=1 𝐶𝑡𝑘

𝑣𝑡𝑘

𝐶

)︂
ln 𝑣

Payments(amounts, times, gr).equated_time(c=C)

Approximate dollar-weighted yield, k=1/2: 𝑗 ≈ 2𝐼
𝐴+𝐵−𝐼

Payments(amounts, times, gr).dollar_weighted_yield(k_approx=True)

106 Chapter 5. Notation Guide

TmVal Documentation, Release v0.0.11

Annual time-weighted yield rate: 𝑖𝑡𝑤 = (1 + 𝑗𝑡𝑤)
1
𝑇 − 1 =

[︁∏︀𝑟+1
𝑘=1(1 + 𝑗𝑘)

]︁ 1
𝑇 − 1

Payments(amounts, times, gr).time_weighted_yield()

Present value of basic annuity-immediate: 𝑎𝑛 𝑖

Annuity(gr=i, n).pv()

Accumulated value of basic annuity-immediate: 𝑠𝑛 𝑖

Annuity(gr=i, n).sv()

Loan payment, level: 𝑄 = 𝐿
𝑎𝑛 𝑖

get_loan_pmt(
loan_amt=L,
period,
term,
gr=Rate(i))

Savings payment to obtain accumulated balance: 𝑄 = 𝐵
𝑠𝑛 𝑖

get_savings_pmt(
fv=B,
period,
term,
gr=Rate(i)

)

Present value of basic annuity-due: �̈�𝑛 𝑖

Annuity(
gr=i,
n=n,
imd='due'

).pv()

Accumulated value of basic annuity-due: 𝑠𝑛 𝑖

Annuity(
gr=i,
n=n,
imd='due'

).sv()

Present value of basic perpetuity-immediate: 𝑎∞ 𝑖

Annuity(
gr=i,
term=np.Inf,

).pv()

Present value of basic perpetuity-due: �̈�∞ 𝑖

Annuity(
gr=i,
term=np.Inf,

(continues on next page)

107

TmVal Documentation, Release v0.0.11

(continued from previous page)

imd='due'
).sv()

Present value of deferred annuity-immediate: 𝑤|𝑛𝑎

Annuity(
gr,
n=n,
deferral=w

).pv()

Present value of deferred annuity-due: 𝑤|𝑛�̈�

Annuity(
gr,
n=n,
deferral=w,
imd='due'

).pv()

Outstanding loan balance, retrospective method: OLB𝑘 = 𝐿𝑎(𝑘) −𝑄𝑠𝑘

Loan(
amt=L,
pmt=Q,
gr,
period,
term

).olb_r()

Outstanding loan balance, prospective method (adjusted final payment): OLB𝑘 = 𝑄𝑎𝑛−𝑘−1 𝑖 + 𝑅(1 + 𝑖)−(𝑛−𝑘)

Loan(
amt=L,
pmt=Q,
gr,
period,
term

).olb_p(t, r)

Outstanding loan balance, prospective method (equal payments): OLB𝑘 = 𝑄𝑎𝑛−𝑘 𝑖

Loan(
amt=L,
pmt=Q,
gr,
period,
term

).olb_p(t)

Present value of an annuity-immediate with geometrically increasing payments: 𝑃
(︂

1−(1+𝑔
1+𝑖)

𝑛

𝑖−𝑔

)︂
Annuity(

amount=P,
n=n,
gr=Rate(i),

(continues on next page)

108 Chapter 5. Notation Guide

TmVal Documentation, Release v0.0.11

(continued from previous page)

grog=g
).pv()

Present value of annuity-immediate with arithmetically increasing payments: (𝐼𝑃,𝑄𝑎)𝑛 𝑖

Annuity(
amount=P,
n=n,
gr=Rate(i)
aprog=Q

).pv()

Accumulated value of annuity-immediate with arithmetically increasing payments: (𝐼𝑃,𝑄𝑠)𝑛 𝑖

Annuity(
amount=P,
n=n,
gr=Rate(i)
aprog=Q

).sv()

Present value of annuity-immediate with arithmetically decreasing payments: (𝐷𝑎)𝑛 𝑖

Annuity(
amount=n,
n=n,
gr=Rate(i)
aprog=-1

).pv()

Accumulated value of annuity-immediate with arithmetically decreasing payments: (𝐷𝑠)𝑛 𝑖

Annuity(
amount=n,
n=n,
gr=Rate(i)
aprog=-1

).sv()

Present value of annuity-due with arithmetically increasing payments: (𝐼𝑃,𝑄 �̈�)𝑛 𝑖

Annuity(
amount=P,
n=n,
gr=Rate(i)
aprog=Q,
imd='due'

).pv()

Accumulated value of annuity-due with arithmetically increasing payments: (𝐼𝑃,𝑄𝑠)𝑛 𝑖

Annuity(
amount=P,
n=n,
gr=Rate(i)
aprog=Q,

(continues on next page)

109

TmVal Documentation, Release v0.0.11

(continued from previous page)

imd='due'
).sv()

Present value of annuity-due with arithmetically decreasing payments: (𝐷�̈�)𝑛 𝑖

Annuity(
amount=n,
n=n,
gr=Rate(i)
aprog=-1,
imd='due'

).pv()

Accumulated value of annuity-due with arithmetically decreasing payments: (𝐷𝑠)𝑛 𝑖

Annuity(
amount=n,
n=n,
gr=Rate(i),
aprog=-1,
imd='due'

).sv()

Present value of perpetuity-immediate with arithmetically increasing payments: (𝐼𝑃,𝑄𝑎)∞ 𝑖

Annuity(
amount=P,
term=np.Inf,
gr=Rate(i),
aprog=Q

).pv()

Present value of perpetuity-due with arithmetically increasing payments: (𝐼𝑃,𝑄 �̈�)∞ 𝑖

Annuity(
amount=P,
term=np.Inf,
gr=Rate(i)
aprog=Q,
imd='due'

).pv()

Present value of annuity-immediate with payments more frequent than each interest period: 𝑎
(𝑚)
𝑛 𝑖

Annuity(
amount=1/m,
term=n,
gr=Rate(i),
period=1/m

).pv()

Accumulated value of annuity-immediate with payments more frequent than each interest period: 𝑠
(𝑚)
𝑛 𝑖

Annuity(
amount=1/m,
term=n,

(continues on next page)

110 Chapter 5. Notation Guide

TmVal Documentation, Release v0.0.11

(continued from previous page)

gr=Rate(i),
period=1/m

).sv()

Present value of annuity-due with payments more frequent than each interest period: �̈�
(𝑚)
𝑛 𝑖

Annuity(
amount=1/m,
term=n,
gr=Rate(i),
period=1/m,
imd='due'

).pv()

Accumulated value of annuity-due with payments more frequent than each interest period: 𝑠
(𝑚)
𝑛 𝑖

Annuity(
amount=1/m,
term=n,
gr=Rate(i),
period=1/m,
imd='due'

).sv()

Present value of perpetuity-immediate with payments more frequent than each interest period: 𝑎
(𝑚)
∞ 𝑖

Annuity(
amount=1/m,
term=np.Inf,
gr=Rate(i),
period=1/m

).pv()

Present value of perpetuity-due with payments more frequent than each interest period: 𝑠
(𝑚)
∞ 𝑖

Annuity(
amount=1/m,
term=np.Inf,
gr=Rate(i),
period=1/m,
imd='due'

).pv()

111

TmVal Documentation, Release v0.0.11

112 Chapter 5. Notation Guide

CHAPTER

SIX

GLOSSARY

accumulation function A function that describes how much as single unit of currency grows over time. It is a special
case of the amount function, where the amount invested is restricted to be one unit of currency.

amount function A function that describes how much an invested amount of money grows over time.

annual percentage rate (APR) The nominal interest rate.

annual percentage yield (APY) The annual effective interest rate.

annuity A series of payments made at specified intervals for a fixed or contingent period.

annuity-due An annuity in which the payments occur at the beginning of each payment period.

annuity-immediate An annuity in which the payments occur at the end of each payment period.

balloon payment An adjustment to the value of the final payment of a loan so that it can occur on the previous integral
payment period.

basic annuity-due An annuity-due that pays 1 at the beginning of each period.

basic annuity-immediate An annuity-immediate that pays 1 at the end of each period.

basic perpetuity-due A perpetuity-due that pays 1 at the beginning of each period.

basic perpetuity-immediate A perpetuity-immediate that pays 1 at the end of each period.

bond A financial instrument that entities, called bond issuers, can use to borrow money from other entities, called
bondholders.

compound interest A geometric pattern of money growth in which interest earned is reinvested at the rate of interest.

deferred annuity A type of annuity whose first payment begins more than one payment period later than its present
valuation date.

discount The amount of money that must be paid up front on a loan.

discount function The reciprocal of the accumulation function:

𝑣(𝑡) =
1

𝑎(𝑡)

dollar-weighted yield rate See yield rate

drop payment An adjustment to the amount of the final payment of a loan so that it can occur on the next integral
payment period.

effective rate of interest A measurement of money growth equal to the percentage change in the value of an
investment between two time periods:

𝑖[𝑡1,𝑡2] =
𝑎(𝑡2) − 𝑎(𝑡1)

𝑎(𝑡1)

113

TmVal Documentation, Release v0.0.11

force of interest The limit of the nominal interest or discount rate as the compounding frequency approaches infinity.

growth The change in the value of money over time.

interest earned A measurement of money growth equal to the change in the value of an investment between two time
periods:

𝐴𝐾(𝑡2) −𝐴𝐾(𝑡1).

internal rate of return See yield rate

modified coupon rate The bond coupon rate expressed in terms of the redemption amount.

net present value (NPV) The sum of the present value of a stream of returns:

𝑛∑︁
𝑘=0

𝑅𝑘𝑣(𝑡𝑘)

nominal discount rate The discount rate 𝑑(𝑚) compounded 𝑚 times per year.

nominal interest rate The interest rate 𝑖(𝑚) compounded 𝑚 times per year.

retrospective method A way of calculating the outstanding loan balance at time 𝑡 by subtracting the accumulated
value of the payments to date from the accumulated value of the principal.

par-value bond A bond whose face value equals its redemption amount.

perpetuity An annuity with an infinite number of payments

perpetuity-due A perpetuity that makes payments at the beginning of each period.

perpetuity-immediate A perpetuity that makes payments at the end of each period.

principal

(1) An initial investment of money.

(2) The original amount of a loan that must be paid back.

prospective method A method of calculating the outstanding loan balance at a point in time 𝑡 that sums up the
remaining payments and discounts them to time 𝑡.

present value The value today of money to be received in the future.

simple interest A linear pattern of money growth in which interest earned is a fixed amount per time period.

yield rate The rate that solves the time 𝜏 equation of value.

114 Chapter 6. Glossary

CHAPTER

SEVEN

REFERENCES

1. David Beauchemin and Vincent Goulet, Actuarial symbols of life contingencies and financial mathematics,
École d’actuariat, Université Laval, (2019).

2. Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).

3. Leslie Vaaler and James Daniel, Mathematical Interest Theory, Washington, D.C.: Mathematical Association
of America, (2009).

4. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, in press.

115

TmVal Documentation, Release v0.0.11

116 Chapter 7. References

CHAPTER

EIGHT

PDF VERSION

TmVal Documentation

117

https://genedan.com/tmval/docs/tmval.pdf

TmVal Documentation, Release v0.0.11

118 Chapter 8. PDF Version

INDEX

A
acc_disc() (tmval.bond.Bond method), 95
acc_func() (tmval.rate.Rate method), 91
accrued_interest() (tmval.bond.Bond method),

96
Accumulation (class in tmval.growth), 82
accumulation function, 113
adj_principal() (tmval.bond.Bond method), 98
am_interest() (tmval.bond.Bond method), 95
am_prem() (tmval.bond.Bond method), 94
amortization() (tmval.bond.Bond method), 95
amortization() (tmval.loan.Loan method), 102
Amount (class in tmval.growth), 80
amount function, 113
amt_from_intdisc() (tmval.growth method), 79
amt_func() (tmval.rate.Rate method), 91
annual percentage rate (APR), 113
annual percentage yield (APY), 113
annuity, 113
Annuity (class in tmval.annuity), 85
annuity-due, 113
annuity-immediate, 113
apr() (in module tmval.conversions), 66
apy() (in module tmval.conversions), 66

B
balance() (tmval.bond.Bond method), 94
balloon payment, 113
bankers_rule() (in module tmval.growth), 64
base_amount() (tmval.bond.Bond method), 94
basic annuity-due, 113
basic annuity-immediate, 113
basic perpetuity-due, 113
basic perpetuity-immediate, 113
bond, 113
Bond (class in tmval.bond), 92

C
clean() (tmval.bond.Bond method), 96
compound interest, 113
compound_solver() (in module tmval.growth), 64
convert_rate() (tmval.rate.Rate method), 90

coupon_bound_t() (tmval.bond.Bond method), 98
coupon_f() (tmval.bond.Bond method), 98

D
deferred annuity, 113
dirty() (tmval.bond.Bond method), 95
discount, 113
discount function, 113
discount_from_interest() (in module

tmval.conversions), 65
discount_func() (tmval.growth.Accumulation

method), 83
discount_interval() (tmval.growth.Amount

method), 82
dollar-weighted yield rate, 113
drop payment, 113
dw_approx() (in module tmval.value.Payments), 89

E
eff_disc_from_eff_disc() (in module

tmval.conversions), 68
eff_disc_from_eff_int() (in module

tmval.conversions), 67
eff_disc_from_nom_disc() (in module

tmval.conversions), 71
eff_disc_from_nom_int() (in module

tmval.conversions), 69
eff_int_from_eff_disc() (in module

tmval.conversions), 67
eff_int_from_eff_int() (in module

tmval.conversions), 66
eff_int_from_nom_disc() (in module

tmval.conversions), 70
eff_int_from_nom_int() (in module

tmval.conversions), 69
effective rate of interest, 113
effective_discount() (tmval.growth.Amount

method), 82
effective_from_nominal_disc() (in module

tmval.conversions), 65
effective_from_nominal_int() (in module

tmval.conversions), 65

119

TmVal Documentation, Release v0.0.11

effective_interval() (tmval.growth.Amount
method), 81

effective_rate() (tmval.growth.Amount method),
81

equated_time() (in module tmval.value.Payments),
88

F
fixed_principal() (tmval.loan.Loan method), 103
force of interest, 114
future_principal() (tmval.growth.Accumulation

method), 83

G
get_accumulation() (tmval.growth.Amount

method), 82
get_balloon() (tmval.annuity.Annuity method), 87
get_coupon_amt() (tmval.bond.Bond method), 93
get_coupon_intervals() (tmval.bond.Bond

method), 94
get_coupon_times() (tmval.bond.Bond method),

93
get_coupons() (tmval.bond.Bond method), 93
get_drop() (tmval.annuity.Annuity method), 87
get_jump_times() (tmval.growth.TieredBal

method), 84
get_loan_amt() (in module tmval.annuity), 72
get_loan_pmt() (in module tmval.annuity), 71
get_n_coupons() (tmval.bond.Bond method), 93
get_number_of_pmts() (in module tmval.annuity),

73
get_payments() (tmval.loan.Loan method), 100
get_perpetuity_gr() (in module tmval.annuity),

74
get_perpetuity_pmt() (in module tmval.annuity),

74
get_r_pmt() (tmval.annuity.Annuity method), 87
get_redemption() (tmval.bond.Bond method), 93
get_savings_pmt() (in module tmval.annuity), 72
growth, 114

H
hybrid_principal() (tmval.loan.Loan method),

104

I
interest earned, 114
interest_earned() (tmval.growth.Amount

method), 81
interest_from_discount() (in module

tmval.conversions), 65
interest_on_accrued() (tmval.bond.Bond

method), 99
interest_paid() (tmval.loan.Loan method), 102

internal rate of return, 114
irr() (in module tmval.value.Payments), 88

K
k_from_intdisc() (tmval.growth method), 80
k_solver() (in module tmval.growth), 64

L
last_coupon_amt() (tmval.bond.Bond method), 97
last_coupon_t() (tmval.bond.Bond method), 98
Loan (class in tmval.loan), 100

M
makeham() (tmval.bond.Bond method), 94
modified coupon rate, 114

N
net present value (NPV), 114
next_coupon_amt() (tmval.bond.Bond method), 97
next_coupon_t() (tmval.bond.Bond method), 98
nom_disc_from_eff_disc() (in module

tmval.conversions), 68
nom_disc_from_eff_int() (in module

tmval.conversions), 67
nom_disc_from_nom_disc() (in module

tmval.conversions), 71
nom_disc_from_nom_int() (in module

tmval.conversions), 70
nom_int_from_eff_disc() (in module

tmval.conversions), 68
nom_int_from_eff_int() (in module

tmval.conversions), 66
nom_int_from_nom_disc() (in module

tmval.conversions), 70
nom_int_from_nom_int() (in module

tmval.conversions), 69
nominal discount rate, 114
nominal interest rate, 114

O
olb_p() (in module tmval.annuity), 73
olb_p() (tmval.loan.Loan method), 101
olb_r() (in module tmval.annuity), 73
olb_r() (tmval.loan.Loan method), 101
osi() (in module tmval.growth), 63

P
pairwise() (in module tmval.value), 76
par-value bond, 114
parse_cgr() (tmval.bond method), 77
Payments (class in tmval.value), 88
perpetuity, 114
perpetuity-due, 114

120 Index

TmVal Documentation, Release v0.0.11

perpetuity-immediate, 114
present value, 114
principal, 114
principal_paid() (tmval.loan.Loan method), 101
principal_val() (tmval.loan.Loan method), 102
prior_coupons() (tmval.bond.Bond method), 99
prospective method, 114
pv() (tmval.annuity.Annuity method), 86

R
Rate (class in tmval.rate), 89
rate_from_earned() (tmval.growth method), 77
rate_from_intdisc() (tmval.growth method), 78
rc_yield() (tmval.loan.Loan method), 103
read_iym() (in module tmval.growth), 75
retrospective method, 114

S
sale_prem() (tmval.bond.Bond method), 97
sf_final() (tmval.loan.Loan method), 103
sgr_equiv() (tmval.loan.Loan method), 104
simple interest, 114
simple_interval_solver() (in module

tmval.growth), 76
simple_solver() (in module tmval.growth), 63
SimpleLoan (class in tmval.growth), 84
sink_payments() (tmval.loan.Loan method), 103
sinking() (tmval.loan.Loan method), 103
standardize() (tmval.rate.Rate method), 91
standardize_acc() (in module tmval.growth), 75
standardize_rate() (in module tmval.rate), 74
sv() (tmval.annuity.Annuity method), 86

T
term_floor() (tmval.bond.Bond method), 99
TieredBal (class in tmval.growth), 83
TieredTime (class in tmval.growth), 84
time_weighted_yield() (in module tmval.value),

76
total_payments() (tmval.loan.Loan method), 102
tt_iym() (in module tmval.growth), 75

V
val() (tmval.growth.Accumulation method), 83
val() (tmval.growth.Amount method), 81

Y
yield rate, 114
yield_c() (tmval.bond.Bond method), 99
yield_j() (tmval.bond.Bond method), 97
yield_s() (tmval.bond.Bond method), 96

Index 121

	Introducing TmVal
	Feature Highlights
	Amount and Accumulation Functions
	Interest Rate Conversions
	Equations of Value
	Annuities
	Amortization
	Bonds
	Term Structure
	Development Status
	Further Reading

	Installation and Quickstart
	The easy way - pip
	From GitHub
	Troubleshooting

	Usage Tutorial
	Growth
	Simple Interest
	Compound Interest
	Amount Functions
	Accumulation Functions
	Interest
	The Rate Class
	A Friendly Reminder
	Tiered Accounts
	Discount
	Interest-Discount Relationships
	Time Value of Money
	Nominal Interest
	Interest-Discount Rate Conversions
	Force of Interest
	The Rate Class, Revisited
	The Investment Year Method

	Value
	The Payments Class
	Net Present Value
	Equations of Value
	Equated Time
	Dollar-Weighted Yield
	Approximate Dollar-Weighted Yield Rate
	Time-Weighted Yield

	Annuities
	Annuities-Immediate
	Annuities-Due
	Perpetuities
	Deferred Annuities
	Nonlevel Annuities
	Nonlevel Annuities - Geometric Progression
	Nonlevel Annuities - Arithmetic Progression
	Perpetuities - Arithmetic Progression
	Nonintegral Terms
	General Accumulation Functions

	Loans
	Outstanding Loan Balance - Retrospective Method
	Outstanding Loan Balance - Prospective Method

	Bonds
	Zero-Coupon Bonds
	Coupon Bonds
	Nonlevel Coupons
	Bond Premium and Discount
	Makeham’s Formula

	Pandas Compatibility

	API Reference
	General Functions
	tmval.simple_solver
	tmval.osi
	tmval.bankers_rule
	tmval.compound_solver
	tmval.k_solver
	tmval.interest_from_discount
	tmval.discount_from_interest
	tmval.effective_from_nominal_int
	tmval.effective_from_nominal_disc
	tmval.apy
	tmval.apr
	tmval.eff_int_from_eff_int
	tmval.nom_int_from_eff_int
	tmval.eff_disc_from_eff_int
	tmval.nom_disc_from_eff_int
	tmval.eff_int_from_eff_disc
	tmval.eff_disc_from_eff_disc
	tmval.nom_int_from_eff_disc
	tmval.nom_disc_from_eff_disc
	tmval.eff_int_from_nom_int
	tmval.nom_int_from_nom_int
	tmval.eff_disc_from_nom_int
	tmval.nom_disc_from_nom_int
	tmval.eff_int_from_nom_disc
	tmval.nom_int_from_nom_disc
	tmval.eff_disc_from_nom_disc
	tmval.nom_disc_from_nom_disc
	tmval.get_loan_pmt
	tmval.get_loan_amt
	tmval.get_savings_pmt
	tmval.get_number_of_pmts
	tmval.olb_r
	tmval.olb_p
	tmval.get_perpetuity_gr
	tmval.get_perpetuity_pmt
	tmval.standardize_rate
	tmval.read_iym
	tmval.tt_iym
	tmval.standardize_acc
	tmval.simple_interval_solver
	tmval.pairwise
	tmval.time_weighted_yield
	tmval.parse_cgr
	tmval.rate_from_earned
	tmval.rate_from_intdisc
	tmval.amt_from_intdisc
	tmval.k_from_intdisc

	Amount
	tmval.Amount.val
	tmval.Amount.interest_earned
	tmval.Amount.effective_rate
	tmval.Amount.effective_interval
	tmval.Amount.discount_interval
	tmval.Amount.effective_discount
	tmval.Amount.get_accumulation

	Accumulation
	tmval.Accumulation.val
	tmval.Accumulation.discount_func
	tmval.Accumulation.future_principal

	TieredBal
	tmval.TieredBal.get_jump_times

	TieredTime
	SimpleLoan
	Annuity
	tmval.Annuity.pv
	tmval.Annuity.sv
	tmval.Annuity.get_r_pmt
	tmval.Annuity.get_drop
	tmval.Annuity.get_balloon

	Payments
	tmval.Payments.equated_time
	tmval.Payments.irr
	tmval.Payments.dw_approx

	Rate
	tmval.Rate.convert_rate
	tmval.Rate.amt_func
	tmval.Rate.acc_func
	tmval.Rate.standardize

	Bond
	tmval.Bond.get_coupon_times
	tmval.Bond.get_coupon_amt
	tmval.Bond.get_redemption
	tmval.Bond.get_n_coupons
	tmval.Bond.get_coupons
	tmval.Bond.get_coupon_intervals
	tmval.Bond.makeham
	tmval.Bond.base_amount
	tmval.Bond.balance
	tmval.Bond.am_prem
	tmval.Bond.acc_disc
	tmval.Bond.am_interest
	tmval.Bond.amortization
	tmval.Bond.dirty
	tmval.Bond.clean
	tmval.Bond.accrued_interest
	tmval.Bond.yield_s
	tmval.Bond.yield_j
	tmval.Bond.sale_prem
	tmval.Bond.last_coupon_amt
	tmval.Bond.next_coupon_amt
	tmval.Bond.last_coupon_t
	tmval.Bond.next_coupon_t
	tmval.Bond.coupon_bound_t
	tmval.Bond.coupon_f
	tmval.Bond.adj_principal
	tmval.Bond.interest_on_accrued
	tmval.Bond.yield_c
	tmval.Bond.prior_coupons
	tmval.Bond.term_floor

	Loan
	tmval.Loan.get_payments
	tmval.Loan.olb_r
	tmval.Loan.olb_p
	tmval.Loan.principal_paid
	tmval.Loan.total_payments
	tmval.Loan.interest_paid
	tmval.Loan.principal_val
	tmval.Loan.amortization
	tmval.Loan.sf_final
	tmval.Loan.sink_payments
	tmval.Loan.sinking
	tmval.Loan.rc_yield
	tmval.Loan.fixed_principal
	tmval.Loan.hybrid_principal
	tmval.Loan.sgr_equiv

	Notation Guide
	Glossary
	References
	PDF Version
	Index

