• Home
  • Readings
  • Github
  • MIES
  • TmVal
  • About
Gene Dan's Blog

Monthly Archives: July 2020

You are browsing the site archives by month.

No. 144: MIES – Intertemporal Choice

26 July, 2020 10:11 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

This week, I’ve been continuing my work on incorporating risk into the consumer behavior component of MIES. The next step in this process involves the concept of intertemporal choice, an interpretation of the budget constraint problem whereby a consumer can shift consumption from one time period to another by means of savings and loans. The content of this post follows chapter 10 of Varian.

For example, a person can consume more in a future period by saving money. A person can also increase their consumption today by taking out a loan, which comes at a cost of future consumption because they have to pay interest. When making decisions between current and future consumption, we also have to think about time value of money. When I was reading through Varian, I was happy to see that many of the concepts I learned from the financial mathematics actuarial exam were also discussed by Varian – such as bonds, annuities, and perpetuities – albeit in much less detail.

This inspired me to create a new repo to handle time value of money computations, which is not yet ready for its own series of posts, but for which you can see the initial work here. I had intended to make this repo further out in the future, but I got excited and started early.

Also relevant, is the concept of actuarial communication. Now that I’m blogging more about actuarial work, I will need to be able to write the notation here. There are some \LaTeX packages that can render actuarial notation, such as actuarialsymbol. Actuaries are still in the stone age when it comes to sharing technical work over the Internet, not out of ignorance, since many actuaries are familiar with \LaTeX, but out of corporate inertia in getting the right tools at work (which I can suppose be due to failure to persuade the right people) and lack of momentum and willingness as many people simply just try to make do with using ASCII characters to express mathematical notation. I think this is a major impediment to adding rigor to practical actuarial work, which many young analysts complain about when they first start working, as they notice that spreadsheet models tend to be a lot more dull than what they see on the exams.

I was a bit anxious in trying to get the actuarialsymbol package working since, although I knew how to get it working on my desktop, I wasn’t sure if it would work with WordPress or Anki, a study tool that I use. Fortunately, it does work! For example, the famous annuity symbol can be rendered with the command \ax{x:\angln}:

Rendered by QuickLaTeX.com

That was easy. There’s no reason why intraoffice email can’t support this, so I hope that it encourages you to pick it up as well.

The Statics Module

Up until now, testing new features has been cumbersome since many of the previous demos I have written about required existing simulation data. That is, in order to test things like intertemporal choice, I would first need to set up a simulation, run it, and then use the results as inputs into the new functions, classes, or methods.

That really shouldn’t be necessary, especially since many of the concepts I have been making modules for apply to economics in general, and not just to insurance. To solve this problem, I created the statics module, which is named after the process of comparative statics, which examines how behavior changes when an exogenous variable in the model changes (aka all the charts I’ve been making about MIES).

The statics module currently has one class, Consumption, which can return attributes such as the optimal consumption of a person given a budget and utility function:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# used for comparative statics
import plotly.graph_objects as go
 
from plotly.offline import plot
 
from econtools.budget import Budget
from econtools.utility import CobbDouglas
 
 
class Consumption:
    def __init__(
            self,
            budget: Budget,
            utility: CobbDouglas
    ):
        self.budget = budget
        self.income = self.budget.income
        self.utility = utility
        self.optimal_bundle = self.get_consumption()
        self.fig = self.get_consumption_figure()
 
    def get_consumption(self):
        optimal_bundle = self.utility.optimal_bundle(
            p1=self.budget.good_x.adjusted_price,
            p2=self.budget.good_y.adjusted_price,
            m=self.budget.income
        )
 
        return optimal_bundle
 
    def get_consumption_figure(self):
        fig = go.Figure()
        fig.add_trace(self.budget.get_line())
        fig.add_trace(self.utility.trace(
            k=self.optimal_bundle[2],
            m=self.income / self.budget.good_x.adjusted_price * 1.5
        ))
 
        fig.add_trace(self.utility.trace(
            k=self.optimal_bundle[2] * 1.5,
            m=self.income / self.budget.good_x.adjusted_price * 1.5
        ))
 
        fig.add_trace(self.utility.trace(
            k=self.optimal_bundle[2] * .5,
            m=self.income / self.budget.good_x.adjusted_price * 1.5
        ))
 
        fig['layout'].update({
            'title': 'Consumption',
            'title_x': 0.5,
            'xaxis': {
                'title': 'Amount of ' + self.budget.good_x.name,
                'range': [0, self.income / self.budget.good_x.adjusted_price * 1.5]
            },
            'yaxis': {
                'title': 'Amount of ' + self.budget.good_y.name,
                'range': [0, self.income * 1.5]
            }
        })
 
        return fig
 
    def show_consumption(self):
        plot(self.fig)

A lot of the code here is the same as that which can be found in the Person class. However, instead of needing to instantiate a person to do comparative statics, I can just use the Consumption class directly from the statics module. This should make creating and testing examples much easier.

Since much of the code in statics is the same as in the Person class, that gives me a hint that I can make things more maintainable by refactoring the code. I would think the right thing to do is to have the Person class use the Consumption class in the statics module, rather than the other way around.

The Intertemporal Class

The intertemporal budget constraint is:

    \[c_1 + c_2/(1+r) = m_1 + m_2/(1+r)\]

Note that this has the same form as the endowment budget constraint:

    \[p_1 x_1 + p_2 x_2 = p_1 m_1 + p_2 m_2 \]

With the difference being that the two endowment goods are now replaced by consumption in times 1 and 2, represented by the cs and the prices, the ps are now replaced by discounted unit prices. The subscript 1 represents the current time and the subscript 2 represents the future time, with the price of future consumption being discounted to present value via the interest rate, r.

The consumer can shift consumption between periods 1 and 2 via saving and lending, subject to the constraint that the amount saved during the first period cannot exceed their first period income, and the amount borrowed during the first period cannot exceed the present value of the income of the second period.

Since the intertemporal budget constraint is a form of the endowment constraint, we can modify the Endowment class in MIES to accommodate this type of consumption. I have created a subclass called Intertemporal that inherits from the Endowment class:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Intertemporal(Endowment):
    def __init__(
            self,
            good_x: Good,
            good_y: Good,
            good_x_quantity: float,
            good_y_quantity: float,
            interest_rate: float = 0,
            inflation_rate: float = 0
            ):
        Endowment.__init__(
            self,
            good_x,
            good_y,
            good_x_quantity,
            good_y_quantity,
        )
        self.interest_rate = interest_rate
        self.inflation_rate = inflation_rate
        self.good_y.interest_rate = self.interest_rate
        self.good_y.inflation_rate = self.inflation_rate

The main difference here is that the Intertemporal class can accept an interest rate and an inflation rate to adjust the present value of future consumption.

Example

As an example, suppose we have a person who makes 5 dollars in each of time periods 1 and 2. The market interest rate is 10% and their utility function takes the Cobb Douglas form of:

    \[u(x_1, x_2) = x_1^{.5} x_2^{.5}\]

which means they will spend half of the present value of the endowment as consumption in period 1:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from econtools.budget import Budget, Intertemporal, Good
from econtools.statics import Consumption
from econtools.utility import CobbDouglas
 
# test if intercepts plot appropriately with an interest rate of 10%
m1 = Good(price=1, name='Time 1 Consumption')
 
m2 = Good(price=1, name='Time 2 Consumption')
 
endowment = Intertemporal(
    good_x=m1,
    good_y=m2,
    good_x_quantity=5,
    good_y_quantity=5,
    interest_rate=.10
)
 
budget = Budget.from_endowment(endowment, name='budget')
 
utility = CobbDouglas(.5, 0.5)
 
consumption = Consumption(budget=budget, utility=utility)
 
consumption.show_consumption()

The main thing that sticks out here is that the slope of the budget constraint has changed to reflect the adjustment of income to present value. The x-axis intercept is slightly less than 10 because the present value of income is slightly less than 10, and the y-axis intercept is slightly more than 10 because if a person saved all of their time 1 income, they would receive interest of 5 * .1 = .5, making maximum consumption in period 2 10.5.

Since the person allocates half of the present value of the endowment to time 1 consumption, this means they will spend (5 + 5/1.1) * .5 = 4.77 in period one, saving 5 – 4.77 = .23, which then grows to .23 * (1 + .1) = .25 in period 2, which allows for a time 2 consumption of 5 + .25 = 5.25. This is verified by calling the optimal_bundle() method of the Consumption class:

Python
1
2
consumption.optimal_bundle
Out[7]: (4.7727272727272725, 5.25, 5.005678593539359)

Further Improvements

The Varian chapter on intertemporal choice briefly explores present value calculations for various payment streams, such as bonds and perpetuities. I first made a small attempt at creating a tvm module, but quickly realized that the subject of time value of money is much more complex than what is introduced in Varian, since I know that other texts go further in depth, and hence it may be necessary to split a new repo off from MIES so that it can be distributed separately. This repo is called TmVal, the early stages of which I have uploaded here.

Neither of these are ready for demonstration, but you can click on the links if you are interested in seeing what I have done. The next chapter of Varian covers asset markets, which at first glance seems to just be some examples of economic models, so I’m not sure if it has any features I would like to add to MIES. There is still more work to be done on refactoring the code, so I may do that, or move further into risk aversion, or do some more work on TmVal.

Posted in: Actuarial, MIES / Tagged: economics, insurance, intertemporal choice, MIES

No. 143: MIES – Endowments

19 July, 2020 11:57 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

Last week, I took a break from MIES to focus on PCDM, a relational database specification for the P&C insurance industry. This week, I’m back to making progress on the consumer behavior portion of MIES, by shifting the focus from personal income to the personal endowment as the main financial constraint underlying purchasing decisions.

In short, an endowment is the consumer’s assets. When making consumption choices, people can use their income to purchase goods and services, but they can also draw from assets that they have accumulated over time, such as from savings and checking accounts, and by selling goods that they own. Furthermore, by taking the endowment into consideration, we will now be able to model situation when a person might not have a regular income, but can still make purchases using their assets (such as unemployed or retired persons who are not working).

In the context of insurance, the endowment is important because people purchase insurance to indemnify themselves against events that might damage or reduce the value of their assets. In the absence of the endowment, we would ignore an important determinant of insurance purchasing behavior. Incorporating wealth into MIES will take some time, and the textbook material I need to work on spans five chapters of Varian. Therefore, I estimate that this process will take me at least a month to do:

  1. Endowment
  2. Intertemporal Choice
  3. Asset Markets
  4. Uncertainty
  5. Risky Assets

These concepts will involve making some substantial changes to the utility functions as well. For now I’ll start with the endowment, which required me to modify the Budget, Slutsky, and Hicks classes of MIES.

The Endowment Class

An endowment is a bundle of goods or services that has a value based on the sum product of their prices and quantities:

    \[p_1 \omega_1 + p_2 \omega_2 = m \]

Where m represents income, each omega represents the quantity of each good, and each p represents the price. Rather than treat income as a flow quantity from an external source, in this interpretation of consumer choice theory we, we treat income as a stock quantity that includes the assets of of the consumer – that is, what the consumer has to spend at a certain point of time depends on the valuation of their assets.

This definition of income loosens the assumption of fixed income that I had made until now. This is because changes in asset values can now impact a person’s income. For example, if a person has a car and a house, their depreciation or appreciation changes the amount the person can sell them for on the market.

The good news is that MIES already has much of the machinery already coded up to allow us to work with endowments, so the new class definition is quite simple:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Endowment:
    def __init__(
            self,
            good_x: Good,
            good_y: Good,
            good_x_quantity: float,
            good_y_quantity: float,
            ):
        self.good_x = good_x
        self.good_y = good_y
        self.good_x_quantity = good_x_quantity
        self.good_y_quantity = good_y_quantity
 
    @property
    def income(self):
        income = self.good_x.price * self.good_x_quantity + self.good_y.price * self.good_y_quantity
        return income

An endowment takes two goods, and their quantities. Upon initialization, Python will automatically calculate the Endowment’s value by multiplying the prices of the goods by the quantities supplied. I wrote this function as a property decorator, which was introduced to fix a bug I discovered when working with the Budget class. Earlier, changing the price of a good failed to change the budget constraint of a consumer, but the property decorator will now dynamically calculate certain attributes that depend on the price, such as income in the case of an endowment.

To illustrate, we can define two goods, each with a price of 1. We then initialize an endowment with a quantity of 5 for each of these goods:

1
2
3
4
5
6
7
from econtools.budget import Endowment, Good
 
good_1 = Good(price=1, name='good_1')
 
good_2 = Good(price=1, name='good_2')
 
endowment = Endowment(good_x=good_1, good_y=good_2, good_x_quantity=5, good_y_quantity=5)

Now we can check that the income was properly calculated by calling endowment.income. Since each good has a price of 1, and there are 5 of each good, the income should be 5 x 1 + 5 x 1 = 10:

Python
1
2
endowment.income
Out[4]: 10

Now that we have the Endowment class defined, we need to modify the other classes that used goods, such as the Budget class. Previously, the Budget class accepted two goods, an income amount, and a name to refer to the budget. Now I would like the Budget class to an accept an endowment as an alternative to specifying each good individually. The tricky part here is that in the former case, the class needs to be able to keep income fixed when the prices of goods change, but in the latter case, the income needs to change dynamically based on the prices of the goods.

To handle this, I created an alternative constructor called from_endowment() that lets you pass an endowment to the Budget class to initialize a budget object. I also created another constructor called from_bundle() that lets you define a Budget the old way more explicitly, to make it more obvious to anyone reading the code whether the budget was initialized with an endowment or individual goods:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class Budget:
    def __init__(
            self,
            good_x,
            good_y,
            income,
            name=None,
            endowment=None
    ):
        self.good_x = good_x
        self.good_y = good_y
        self.income = income
        self.x_lim = self.income / (min(self.good_x.adjusted_price, self.good_x.price)) * 1.2
        self.y_lim = self.income / (min(self.good_y.adjusted_price, self.good_y.price)) * 1.2
        self.name = name
        self.endowment = endowment
 
        if endowment is not None:
            self.__check_endowment_consistency()
 
    @classmethod
    def from_bundle(
            cls,
            good_x,
            good_y,
            income,
            name=None
    ):
        return cls(
            good_x,
            good_y,
            income,
            name
        )
 
    @classmethod
    def from_endowment(
            cls,
            endowment: Endowment,
            name=None
    ):
        good_x = endowment.good_x
        good_y = endowment.good_y
        income = endowment.income
 
        return cls(
            good_x,
            good_y,
            income,
            name,
            endowment
        )
 
    def __check_endowment_consistency(self):
        # raise exception if endowment is not consistent with its components
        if self.endowment.good_x != self.good_x:
            raise Exception("Endowment good_x inconsistent with budget good_x. "
                            "It is recommended to use the from_endowment alternative "
                            "constructor when supplying an endowment")
 
        if self.endowment.good_y != self.good_y:
            raise Exception("Endowment good_y inconsistent with budget good_y. "
                            "It is recommended to use the from_endowment alternative "
                            "constructor when supplying an endowment")
 
        if (self.endowment.income != (self.endowment.good_x_quantity * self.good_x.price +
                                      self.endowment.good_y_quantity * self.good_y.price)) | \
                (self.endowment.income != self.income):
 
            raise Exception("Endowment income inconsistent with supplied good prices. "
                            "It is recommended to use the from_endowment alternative "
                            "constructor when supplying an endowment")
 
        if self.endowment.good_x.price != self.good_x.price:
            raise Exception("Endowment good_x price inconsistent with budget good_x price. "
                            "It is recommended to use the from_endowment alternative "
                            "constructor when supplying an endowment")
 
        if self.endowment.good_y.price != self.good_y.price:
            raise Exception("Endowment good_y price inconsistent with budget good_y price. "
                            "It is recommended to use the from_endowment alternative "
                            "constructor when supplying an endowment")
...

And lastly, I added some consistency checks to make sure that the endowment value equals the sum product of the prices and quantities of the goods provided. The reason why these checks are here is because a person can still use the default constructor to specify each good individually along with an endowment, just based on how the arguments are defined. While this is possible, I would discourage doing this since 1) it’s less explicit than using the alternative constructors, 2) supplying the individual goods along with the endowment is redundant, and 3) it can lead to errors being thrown.

To initialize a budget by passing an endowment, simply use the alternative constructor:

Python
1
budget_endowment = Budget.from_endowment(endowment=endowment)

Slutsky Decomposition

The loosening of assumptions brought about by the endowment introduces some changes to the Slutsky equation. In the examples I provided a few weeks ago, we assumed that income remained fixed when prices changed. Since changes in price now change the value of the endowment, we must now account for this change in the Slutsky equation. The derivation of this modified form can be found in Varian, so I’ll skip to the result:

    \[\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} + (\omega_1 - x_1)\frac{\Delta x_1^m}{\Delta m}\]

The Slutsky equation can now be explained by three effects: the substitution and ordinary income effects, which are the same as before, and an endowment effect, which models how consumer choice changes when the value of the endowment changes.

Like the Budget class, the Slutsky class has been modified to take budgets that were constructed from individual goods or an endowment. Plotting the Slutsky class is now quite bit messier, since a new budget line, bundle, and utility curve are now added to an already crowded plot.

I have not yet gotten endowments to work within the context of insurance, so the image below comes from a modified version of an example provided in Varian where a milk producer faces a $1 increase in the price of milk – his endowment increases in value, and hence income. However with the graph as cluttered as it is, it can be hard to visually isolate the effects:

It does look better with a larger plotting area if you try it with MIES, but not so much when I have to shrink the image to fit it within the margins here.

Posted in: Actuarial, MIES

No. 142: The Property Casualty Data Model Specification

12 July, 2020 10:31 PM / 4 Comments / Gene Dan

Introduction

A few weeks ago, I stumbled across something neat – the Property Casualty Data Model (PCDM). PCDM is a relational database specification that covers all major parts of an insurance company’s operations. At first glance, the web page on which it is located seemed mundane to me, so I almost overlooked it, but when I opened the accompanying documentation, I realized I had stumbled upon a goldmine of useful information. This document contains enough information to implement an entire data warehouse and then tweak it to an organization’s specific needs.

Although we actuaries have a reputation for being able to handle data, most of us have not received any kind of formal training in handling relational database systems, and have had little interaction with standards organizations outside of our own governing organizations like the CAS, SOA, and AAA. When I tried searching for PCDM in the CAS library, I was astonished to find just a handful of references to the specification, and flabbergasted that there had been a document floating around on another profession’s website for the last seven years that almost no actuaries had ever heard about, but contained the exact type of information that many actuaries wanted but thought had never existed in the public domain (and in my case, it contains more than what I need for parts of the MIES backend).

One benefit that I’ve had from working several jobs, and also as a consultant, is that I’ve been able to witness widely varying levels of maturity of data warehouse systems at commercial insurance companies of different sizes and functions (specialty, commercial, and reinsurance) as well as those of a major stock exchange to get some perspective of how insurance database implementations compare to those of other industries. I have seen many actuaries at small and midsize carriers struggle with how to create OLAP data warehouses, not knowing what tables, relationships, and fields to define, how to do it in a way that conforms to commonly accepted data management practices (if they even knew what they were), or even where to look or whom to talk to to find out what data are stored at the company, and in what form.

Earlier in my career, at a small insurer, a few years before this document existed, I would sometimes encounter databases with hundreds of undocumented tables, not knowing what any of the tables stored, if they were the right tables I needed, or if they were designed appropriately. I was one of the few actuaries in my department who knew SQL (and even then, I wasn’t good at it). So, with my introductory textbook on database management systems at my side and a landline I used to contact people in the IT deparment, I embarked upon the long journey of understanding insurance information systems.

In those days, the game kind of went like this. I would ask my boss if they knew anyone in IT, then I’d pick up the phone and call them to ask if they maintained the database I was looking at or knew of anyone who did or anyone who might know anyone who did. That chain of phone calls typically went 5 people deep until I finally reached someone who actually worked on the relevant database, and if I was lucky, they’d have some documentation, and I’d slowly figure out what kind of data I was working with.

It might have looked like this. What the hell? Boss, this is gonna take me a while to understand. (Actually this is PCDM, but the good news about PCDM is that it’s documented – but imagine what it would be like if it weren’t and the last person who touched it left 3 years ago).

When I moved to a larger organization, I came to realize how large of a knowledge/talent gap there was between companies when I actually got to use a well-documented data warehouse that had all the entities, relationships, and fields defined as well a data dictionary detailing what all the values were – a rare practice that even many established insurers don’t follow. Unfortunately, when I left that organization, I also lost access to that documentation, and with it, a wealth of knowledge on what a proper data warehouse should look like.

I had thought to myself if only the CAS had a standard that actuaries and students could access, we’d have something that would actually resemble what a database at a real insurer actually looked like, instead of just having just theoretical papers from which to learn that might have some code copy-pasted in. If we had a standard, knowledge of proper database design and implementation would then not be employer dependent, and new research papers could reference the standard rather than just imagining what a data warehouse would look like or omitting proprietary parts of a company’s database.

When I came across PCDM, I realized the significance of a document I randomly found while eating breakfast on holiday. Therefore, I immediately got to work in writing an implementation of it in Python so that other actuaries could finally have what I wish I had when I was younger. I completed the first release at the end of the July 4th weekend, and made it available on GitHub. My hope is that somebody out there finds this post and clones my repository – and understands how important it is to spread word of this specification.

Subject Area Models

PCDM details 13 subject area models (SAMs), each of which comes with an entity-relationship (ER) diagram. Each subject area model represents a major portion of an insurance company’s operations:

  1. Party
  2. Account and Agreement
  3. Policy
  4. Claim
  5. Assessment
  6. Agreement Role
  7. Claim Role
  8. Staffing Role
  9. Party Subtype
  10. Insurable
  11. Money
  12. Event
  13. Product Coverage

For example, the Party SAM contains information on all parties that are involved in insurance transactions, such as households, employees, vendors, etc. Other SAMs contain information on underwriting, claims, and accounting operations. The rest of this post will show you what those SAMs look like – the images are crowded and contain quite a bit of information, so it’s best to click on them to see them in full resolution. If you want more details, the PCDM document is available on the object management group website.

Party

As stated before, the Party SAM contains information about households, firms, and staff:

Account and Agreement

The Account and Agreement SAM contains information on legal agreements, such as policies, reinsurance contracts, etc.

Policy

The Policy SAM contains information on…policies. Policy number, effective date, expiration date, limits, deductibles, coverage, etc.

Claim

The Claim SAM contains information on claims, relevant dates, adjusters, lawyers, damage amounts, etc.

Assessment

The Assessment SAM contains information on how the insurer goes about gathering information, such as credit scores, appraisals, and investigations carried out during the claim adjustment and underwriting processes.

Agreement

The Agreement Role SAM contains information on the different types of parties that might be involved in insurance – mostly an expansion of the Party Role superclass found in the Party SAM.

Claim Role

The Claim Role SAM contains information on the parties involved in the adjustment process, such as adjusters, claimants, lawyers, etc.

Staffing Role

The Staffing Role SAM contains information on insurance company staff and contractors.

Party Subtype

The Party Subtype SAM contains information on company subdivisions.

Insurable Object

The Insurable Object SAM contains information on things that can be insured, like cars and buildings.

Money

The Money SAM contains information on transactions, like premium, loss payments, and case reserves.

Event

The Event SAM contains information on policy and claim events, like policy inception, cancelation, and claim occurrence.

Product Coverage

The Product Coverage SAM contains inforamtion on product types and coverages.

Python/SQLAlchemy Implementation

I figured if I want to claim credit for anything besides just copying and pasting the diagrams above from the specification, I should actually make some kind of contribution. The good news is I haven’t found any kind of implementation on GitHub – what I mean by that is the PDF is nice to have and all, but you can’t deploy a datawarehouse with the PDF, it needs to be translated into code which people can then use to deploy the warehouse. Therefore, I’ve written my own implemntation of PCDM in Python using the SQLAlchemy ORM.

Below is an example of how I translated the Party SAM into code. I did this for the 12 other SAMs as well, and then wrote another module to combine them all together into a single deployable data warehouse:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
from sqlalchemy import Column, Integer, Date, String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
 
from pcdm.base import Base
 
 
class Person(Base):
    __tablename__ = 'person'
 
    person_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    prefix_name = Column(String)
 
    first_name = Column(String)
 
    middle_name = Column(String)
 
    last_name = Column(String)
 
    suffix_name = Column(String)
 
    full_legal_name = Column(String)
 
    nickname = Column(String)
 
    birth_date = Column(Date)
 
    birth_place_name = Column(String)
 
    gender_code = Column(String)
 
    person_profession = relationship(
        'PersonProfession',
        primaryjoin='Person.person_id == PersonProfession.person_id',
        back_populates='person'
    )
 
    staff_work_assignment = relationship(
        'Person',
        primaryjoin='Person.person_id == StaffWorkAssignment.person_id',
        back_populates='person'
    )
 
    household_person = relationship(
        'Person',
        primaryjoin='Person.person_id == HouseholdPerson.person_id',
        back_populates='person'
    )
 
    party = relationship(
        'Person',
        primaryjoin='Person.party_id == Party.party_id',
        back_populates='person'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='Person.person_id == HouseholdPersonRole.person_id',
        back_populates='person'
    )
 
    party_assessment = relationship(
        'PartyAssessment',
        primaryjoin='Person.person_id == PartyAssessment.person_id',
        back_populates='person'
    )
 
    staff_position_assignment = relationship(
        'StaffPositionAssignment',
        primaryjoin='Person.person_id == StaffPositionAssignment.person_id',
        back_populates='person'
    )
 
    def __repr__(self):
        return "<Person(" \
               "prefix_name='%s', " \
               "first_name='%s', " \
               "middle_name='%s', "\
               "last_name='%s', " \
               "suffix_name='%s', " \
               "full_legal_name='%s', " \
               "nickname='%s', " \
               "birth_date='%s', " \
               "birth_place_name='%s', " \
               "gender_code='%s', "\
               ")>" % (
                   self.prefix_name,
                   self.first_name,
                   self.middle_name,
                   self.last_name,
                   self.suffix_name,
                   self.full_legal_name,
                   self.nickname,
                   self.birth_date,
                   self.birth_place_name,
                   self.gender_code
                )
 
 
class PersonProfession(Base):
    __tablename__ = 'person_profession'
 
    person_profession_id = Column(
        Integer,
        primary_key=True
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    profession_name = Column(String)
 
    person = relationship(
        'Person',
        primaryjoin='PersonProfession.person_id == Person.person_id',
        back_populates='person_profession'
    )
 
    def __repr__(self):
        return "<PersonProfession(" \
            "person_id='%s', " \
            "profession_name='%s', " \
            ")>" % (
                self.person_id,
                self.profession_name
            )
 
 
class Organization(Base):
    __tablename__ = 'organization'
 
    organization_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    organization_type_code = Column(Integer)
 
    organization_name = Column(String)
 
    alternate_name = Column(String)
 
    acronym_name = Column(String)
 
    industry_type_code = Column(String)
 
    industry_code = Column(String)
 
    dun_and_bradstreet_id = Column(String)
 
    organization_description = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='Organization.organization_id == StaffWorkAssignment.organization_id',
        back_populates='organization'
    )
 
    party = relationship(
        'Party',
        primaryjoin='Organization.party_id == Party.party_id',
        back_populates='organization'
    )
 
    staff_position_assignment = relationship(
        'StaffPositionAssignment',
        primaryjoin='Organization.organization_id == StaffPositionAssignment.organization_id',
        back_populates='organization'
    )
 
    organization_unit = relationship(
        'OrganizationUnit',
        primaryjoin='Organization.organization_id == OrganizationUnit.organization_id',
        back_populates='organization'
    )
 
    for_profit_organization = relationship(
        'ForProfitOrganization',
        primaryjoin='Organization.organization_id == ForProfitOrganization.organization_id',
        back_populates='organization'
    )
 
    government_organization = relationship(
        'GovernmentOrganization',
        primaryjoin='Organization.organization_id == GovernmentOrganization.organization_id',
        back_populates='organization'
    )
 
    not_for_profit_organization = relationship(
        'NotForProfitOrganization',
        primaryjoin='Organization.organization_id == NotForProfitOrganization.organization_id',
        back_populates='organization'
    )
 
    def __repr__(self):
        return "<Organization(" \
               "party_id='%s', " \
               "organization_type_code='%s', " \
               "organization_name='%s', " \
               "alternate_name='%s', "\
               "acronym_name='%s', " \
               "industry_type_code='%s', " \
               "industry_code='%s', " \
               "dun_and_bradstreet_id='%s', " \
               "organization_description='%s', " \
               ")>" % (
                   self.party_id,
                   self.organization_type_code,
                   self.organization_name,
                   self.alternate_name,
                   self.acronym_name,
                   self.industry_type_code,
                   self.industry_code,
                   self.dun_and_bradstreet_id,
                   self.organization_description
                )
 
 
class HouseholdPerson(Base):
    __tablename__ = 'household_person' \
                    ''
    household_person_id = Column(
        Integer,
        primary_key=True
    )
 
    household_id = Column(
        Integer,
        ForeignKey('household.household_id')
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    household = relationship(
        'Household',
        primaryjoin='HouseholdPerson.household_id == Household.household_id',
        back_populates='household_person'
    )
 
    person = relationship(
        'Household',
        primaryjoin='HouseholdPerson.person_id == Person.person_id',
        back_populates='household_person'
    )
 
    def __repr__(self):
        return "<HouseholdPerson(" \
               "household_id='%s', " \
               "person_id='%s', " \
               ")>" % (
                   self.household_id,
                   self.person_id,
                )
 
 
class HouseholdPersonRole(Base):
    __tablename__ = 'household_person_role'
 
    household_person_role_id = Column(
        Integer,
        primary_key=True
    )
 
    household_id = Column(
        Integer,
        ForeignKey('household.household_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    begin_date = Column(Date)
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    end_date = Column(Date)
 
    household = relationship(
        'Household',
        primaryjoin='HouseholdPersonRole.household_id == Household.household_id',
        back_populates='household_person_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='HouseholdPersonRole.party_role_code == PartyRole.party_role_code',
        back_populates='household_person_role'
    )
 
    person = relationship(
        'Person',
        primaryjoin='HouseholdPersonRole.person_id == Person.person_id',
        back_populates='household_person_role'
    )
 
    def __repr__(self):
        return "<HouseholdPersonRole(" \
               "household_id='%s', " \
               "party_role_code='%s', " \
               "begin_date='%s', "\
               "person_id='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.household_id,
                   self.party_role_code,
                   self.begin_date,
                   self.person_id,
                   self.end_date
                )
 
 
class Household(Base):
    __tablename__ = 'household'
 
    household_id = Column(
        Integer,
        primary_key=True
    )
 
    grouping_id = Column(
        Integer,
        ForeignKey('grouping.grouping_id')
    )
 
    household_person = relationship(
        'HouseholdPerson',
        primaryjoin='Household.household_id == HouseholdPerson.household_id',
        back_populates='household'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='Household.grouping_id == Grouping.grouping_id',
        back_populates='household'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='Household.household_id == HouseholdPersonRole.household_id',
        back_populates='household'
    )
 
    household_content = relationship(
        'HouseholdContent',
        primaryjoin='Household.household_id == HouseholdContent.household_id',
        back_populates='household'
    )
 
    def __repr__(self):
        return "<Household(" \
               "grouping_id='%s', " \
               ")>" % (
                   self.grouping_id
                )
 
 
class StaffWorkAssignment(Base):
    __tablename__ = 'staff_work_assignment'
 
    staff_work_assignment_id = Column(
        Integer,
        primary_key=True
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    organization_id = Column(
        Integer,
        ForeignKey('organization.organization_id')
    )
 
    grouping_id = Column(
        Integer,
        ForeignKey('grouping.grouping_id')
    )
 
    begin_date = Column(Date)
    party_role_code = Column(
        Integer,
        ForeignKey('party_role.party_role_code')
    )
    end_date = Column(Date)
 
    person = relationship(
        'Person',
        primaryjoin='StaffWorkAssignment.person_id == Person.person_id',
        back_populates='staff_work_assignment'
    )
 
    organization = relationship(
        'Organization',
        primaryjoin='StaffWorkAssignment.organization_id == Organization.organization_id',
        back_populates='staff_work_assignment'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='StaffWorkAssignment.grouping_id == Grouping.grouping_id',
        back_populates='staff_work_assignment'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='StaffWorkAssignment.party_role_code == PartyRole.party_role_code',
        back_populates='staff_work_assignment'
    )
 
    def __repr__(self):
        return "<StaffWorkAssignment(" \
               "person_id='%s', " \
               "organization_id='%s', " \
               "grouping_id='%s', "\
               "begin_date='%s', " \
               "party_role_code='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.person_id,
                   self.organization_id,
                   self.grouping_id,
                   self.begin_date,
                   self.party_role_code,
                   self.end_date
                )
 
 
class Grouping(Base):
    __tablename__ = 'grouping'
 
    grouping_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    grouping_name = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='Grouping.grouping_id == StaffWorkAssignment.grouping_id',
        back_populates='grouping'
    )
 
    party = relationship(
        'Party',
        primaryjoin='Grouping.party_id == party.party_id',
        back_populates='grouping'
    )
 
    household = relationship(
        'Household',
        primaryjoin='Grouping.grouping_id == Household.grouping_id',
        back_populates='grouping'
    )
 
    professional_group = relationship(
        'ProfessionalGroup',
        primaryjoin='Grouping.grouping_id == ProfessionalGroup.grouping_id',
        back_populates='grouping'
    )
 
    project = relationship(
        'Project',
        primaryjoin='Grouping.grouping_id == Project.grouping_id',
        back_populates='grouping'
    )
 
    team = relationship(
        'Team',
        primaryjoin='Grouping.grouping_id == Team.grouping_id',
        back_populates='grouping'
    )
 
    def __repr__(self):
        return "<Grouping(" \
               "party_id='%s', " \
               "grouping_name='%s', " \
               ")>" % (
                   self.party_id,
                   self.grouping_name
                )
 
 
class PartyRole(Base):
    __tablename__ = 'party_role'
 
    party_role_code = Column(
        String,
        primary_key=True
    )
 
    party_role_name = Column(String)
 
    party_role_description = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='PartyRole.party_role_code == StaffWorkAssignment.party_role_code',
        back_populates='party_role'
    )
 
    party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRole.party_role_code == PartyRelationshipRole.party_role_code',
        back_populates='party_role'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='Party.party_role_code == InsurableObjectPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    claim_party_role = relationship(
        'ClaimPartyRole',
        primaryjoin='PartyRole.party_role_code == ClaimPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='PartyRole.party_role_code == AgreementPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='PartyRole.party_role_code == HouseholdPersonRole.party_role_code',
        back_populates='party_role'
    )
 
    account_party_role = relationship(
        'AccountPartyRole',
        primaryjoin='PartyRole.party_role_code == AccountPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    provider = relationship(
        'Provider',
        primaryjoin='PartyRole.party_role_code == Provider.party_role_code',
        back_populates='party_role'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='PartyRole.party_role_code == ArbitrationPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='PartyRoleCode.party_role_code == LitigationPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    assessment_party_role = relationship(
        'AssessmentPartyRole',
        primaryjoin='PartyRole.party_role_code == AssessmentPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    claim_role = relationship(
        'ClaimRole',
        primaryjoin='PartyRole.party_role_code == ClaimRole.party_role_code',
        back_populates='party_role'
    )
 
    adjuster = relationship(
        'Adjuster',
        primaryjoin='PartyRole.party_role_code == Adjuster.party_role_code',
        back_populates='party_role'
    )
 
    staffing_organization = relationship(
        'StaffingOrganization',
        primaryjoin='PartyRole.party_role_code == StaffingOrganization.party_role_code',
        back_populates='party_role'
    )
 
    staff = relationship(
        'Staff',
        primaryjoin='PartyRole.party_role_code == Staff.party_role_code',
        back_populates='party_role'
    )
 
    def __repr__(self):
        return "<PartyRole(" \
               "party_role_name='%s', " \
               "party_role_description='%s', " \
               ")>" % (
                   self.party_role_name,
                   self.party_role_description
                )
 
 
class Party(Base):
    __tablename__ = 'party'
 
    party_id = Column(
        Integer,
        primary_key=True
    )
 
    party_name = Column(String)
 
    party_type_code = Column(String)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    person = relationship(
        'Person',
        primaryjoin='Party.party_id == Person.party_id',
        back_populates='party'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='Party.party_id == Grouping.party_id',
        back_populates='party'
    )
 
    organization = relationship(
        'Organization',
        primaryjoin='Party.party_id == Organization.party_id',
        back_populates='party'
    )
 
    party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='Party.party_id = PartyRelationship.party_id',
        back_populates='party'
    )
 
    related_party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='Party.party_id = PartyRelationship.related_party_id',
        back_populates='related_party'
    )
 
    legal_jurisdiction_party_identity = relationship(
        'LegalJurisdictionPartyIdentity',
        primaryjoin='Party.party_id == LegalJurisdictionPartyIdentity.party_id',
        back_populates='party'
    )
 
    party_communication = relationship(
        'PartyCommunication',
        primaryjoin='Party.party_id == PartyCommunication.party_id',
        back_populates='party'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='Party.party_id == InsurableObjectPartyRole.party_id',
        back_populates='party'
    )
 
    party_preference = relationship(
        'PartyPreference',
        primaryjoin='Party.party_id == PartyPreference.party_id',
        back_populates='party'
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='Party.party_id == AgreementPartyRole.party_id',
        back_populates='party'
    )
 
    account_party_role = relationship(
        'AccountPartyRole',
        primaryjoin='Party.party_id == AccountPartyRole.party_id',
        back_populates='party'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='Party.party_id == ArbitrationPartyRole.party_id',
        back_populates='party'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='Party.party_id == LitigationPartyRole.party_id',
        back_populates='party'
    )
 
    assessment_party_role = relationship(
        'AssessmentPartyRole',
        primaryjoin='Party.party_id == AssessmentPartyRole.party_id',
        back_populates='party'
    )
 
    party_assessment = relationship(
        'PartyAssessment',
        primaryjoin='Party.party_id == PartyAssessment.party_id',
        back_populates='party'
    )
 
    def __repr__(self):
        return "<Party(" \
               "party_name='%s', " \
               "party_type_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_name,
                   self.party_type_code,
                   self.begin_date,
                   self.end_date
                )
 
 
class PartyRelationship(Base):
    __tablename__ = 'party_relationship'
 
    party_relationship_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    related_party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    relationship_type_code = Column(String)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    party = relationship(
        'Party',
        primaryjoin='PartyRelationship.party_id = Party.party_id',
        back_populates='party_relationship'
    )
 
    related_party = relationship(
        'Party',
        primaryjoin='PartyRelationship.related_party_id = Party.party_id',
        back_populates='related_party_relationship'
    )
 
    party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.party_id == PartyRelationshipRole.party_id ',
        back_populates='party_relationship'
    )
 
    related_party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.related_party_id == PartyRelationshipRole.related_party_id',
        back_populates='related_party_relationship'
    )
 
    party_relationship_role_type_code = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.relationship_type_code == PartyRelationshipRole.relationship_type_code',
        back_populates='party_relationship_type_code'
    )
 
    party_relationship_role_begin_date = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationship.begin_date == PartyRelationshipRole.relationship_begin_date',
        back_populates='party_relationship_begin_date'
    )
 
    def __repr__(self):
        return "<PartyRelationship(" \
               "party_id='%s', " \
               "relationship_type_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_id,
                   self.relationship_type_code,
                   self.begin_date,
                   self.end_date
                )
 
 
class PartyRelationshipRole(Base):
    __tablename__ = 'party_relationship_role'
 
    party_relationship_role_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party_relationship.party_id')
    )
 
    related_party_id = Column(
        Integer,
        ForeignKey('party_relationship.related_party_id')
    )
 
    relationship_type_code = Column(
        Integer,
        ForeignKey('party_relationship.relationship_type_code')
    )
 
    relationship_begin_date = Column(
        Date,
        ForeignKey('party_relationship.begin_date')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    role_begin_date = Column(Date)
 
    party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.party_id == PartyRelationship.party_id',
        back_populates='party_relationship_role'
    )
 
    related_party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.related_party_id == PartyRelationship.related_party_id',
        back_populates='related_party_relationship_role'
    )
 
    party_relationship_type_code = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.relationship_type_code == PartyRelationship.relationship_type_code',
        back_populates='party_relationship_role_type_code'
    )
 
    party_relationship_begin_date = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.relationship_begin_date == PartyRelationship.begin_date',
        back_populates='party_relationship_role_begin_date'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='PartyRelationshipRole.party_role_code == PartyRole.party_role_code',
        back_populates='party_relationship_role'
    )
 
    def __repr__(self):
        return "<PartyRelationshipRole(" \
               "party_id='%s', " \
               "related_party_id='%s', " \
               "relationship_type_code='%s', "\
               "relationship_begin_date='%s', " \
               "party_role_code='%s', " \
               "role_begin_date='%s', " \
               ")>" % (
                   self.party_id,
                   self.related_party_id,
                   self.relationship_type_code,
                   self.relationship_begin_date,
                   self.party_role_code,
                   self.role_begin_date
                )
 
 
class LegalJurisdictionPartyIdentity(Base):
    __tablename__ = 'legal_jurisdiction_party_identity'
 
    legal_jurisdiction_party_id = Column(
        Integer,
        primary_key=True
    )
 
    legal_jurisdiction_id = Column(
        Integer,
        ForeignKey('legal_jurisdiction.legal_jurisdiction_id')
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    legal_identity_type_code = Column(String)
    legal_classification_code = Column(String)
 
    party = relationship(
        'Party',
        primaryjoin='LegalJurisdictionPartyIdentity.party_id == Party.party_id',
        back_populates='legal_jurisdiction_party_identity'
    )
 
    legal_jurisdiction = relationship(
        'LegalJurisdiction',
        primaryjoin='LegalJurisdictionPartyIdentity.legal_jurisdiction_id == LegalJurisdiction.legal_jurisdiction_id',
        back_populates='legal_jurisdiction_party_identity'
    )
 
    def __repr__(self):
        return "<LegalJurisdictionPartyIdentity(" \
               "legal_jurisdiction_id='%s', " \
               "party_id='%s', " \
               "legal_identity_type_code='%s', "\
               "legal_classification_code='%s', " \
               ")>" % (
                   self.legal_jurisdiction_id,
                   self.party_id,
                   self.legal_identity_type_code,
                   self.legal_classification_code
                )
 
 
class LegalJurisdiction(Base):
    __tablename__ = 'legal_jurisdiction'
 
    legal_jurisdiction_id = Column(
        Integer,
        primary_key=True
    )
 
    legal_jurisdiction_name = Column(String)
    legal_jurisdiction_description = Column(String)
    rules_preference_description = Column(String)
 
    legal_jurisdiction_party_identity = relationship(
        'LegalJurisdictionPartyIdentity',
        primaryjoin='LegalJurisdiction.legal_jurisdiction_id == LegalJurisdictionPartyIdentity.legal_jurisdiction_id',
        back_populates='legal_jurisdiction'
    )
 
    def __repr__(self):
        return "<LegalJurisdiction(" \
               "legal_jurisdiction_name='%s', " \
               "legal_jurisdiction_description='%s', " \
               "rules_preference_description='%s', "\
               ")>" % (
                   self.legal_jurisdiction_name,
                   self.legal_jurisdiction_description,
                   self.rules_preference_description
                )
 
 
class PartyCommunication(Base):
    __tablename__ = 'party_communication'
 
    party_communication_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    communication_id = Column(
        Integer,
        ForeignKey('communication_identity.communication_id')
    )
 
    party_locality_code = Column(Integer)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    preference_sequence_number = Column(Integer)
 
    preference_day_and_time_group_code = Column(Integer)
 
    party_routing_description = Column(String)
 
    party = relationship(
        'Party',
        primaryjoin='PartyCommunication.party_id == Party.party_id',
        back_populates='party_communication'
    )
 
    communication = relationship(
        'CommunicationIdentity',
        primaryjoin='PartyCommunication.communication_id == CommunicationIdentity.communication_id',
        back_populates='party_communication'
    )
 
    def __repr__(self):
        return "<PartyCommunication(" \
               "party_id='%s', " \
               "communication_id='%s', " \
               "party_locality_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', "\
               "preference_sequence_number='%s', " \
               "preference_day_and_time_group_code='%s', " \
               "party_routing_description='%s', " \
               ")>" % (
                   self.party_id,
                   self.communication_id,
                   self.party_locality_code,
                   self.begin_date,
                   self.end_date,
                   self.preference_sequence_number,
                   self.preference_day_and_time_group_code,
                   self.party_routing_description
                )
 
 
class CommunicationIdentity(Base):
    __tablename__ = 'communication_identity'
 
    communication_id = Column(
        Integer,
        primary_key=True
    )
 
    communication_type_code = Column(String)
    communication_value = Column(String)
    communication_qualifier_value = Column(String)
 
    geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    party_communication = relationship(
        'PartyCommunication',
        primaryjoin='CommunicationIdentity.communication_id == PartyCommunication.communication_id',
        back_populates='communication'
    )
    geographic_location = relationship(
        'GeographicLocationIdentifier',
        primaryjoin='CommunicationIdentity.geographic_location_id == '
                    'GeographicLocationIdentifier.geographic_location_id',
        back_populates='communication_identity'
    )
 
    def __repr__(self):
        return "<CommunicationIdentity(" \
               "communication_type_code='%s', " \
               "communication_value='%s', " \
               "communication_qualifier_value='%s', " \
               "geographic_location_id='%s', " \
               ")>" % (
                   self.communication_type_code,
                   self.communication_value,
                   self.communication_qualifier_value,
                   self.geographic_location_id
                )
 
 
class GeographicLocation(Base):
    __tablename__ = 'geographic_location'
 
    geographic_location_id = Column(
        Integer,
        primary_key=True
    )
 
    geographic_location_type_code = Column(String)
 
    location_code = Column(String)
 
    location_name = Column(String)
 
    location_number = Column(String)
 
    state_code = Column(
        String,
        ForeignKey('state.state_code')
    )
 
    parent_geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    location_address_id = Column(
        Integer,
        ForeignKey('location_address.location_address_id')
    )
 
    physical_location_identifier = Column(
        Integer,
        ForeignKey('physical_location.physical_location_id')
    )
 
    geographic_location_parent = relationship(
        'GeographicLocation',
        primaryjoin='GeographicLocation.parent_geographic_location_id =='
                    ' GeographicLocation.geographic_location_id',
        back_populates='geographic_location_parent_u'
    )
 
    geographic_location_parent_u = relationship(
        'GeographicLocation',
        primaryjoin='GeographicLocation.geographic_location_id =='
                    ' GeographicLocation.parent_geographic_location_id',
        back_populates='geographic_location_parent'
    )
 
    communication_identity = relationship(
        'GeographicLocation',
        primaryjoin='CommunicationIdentity.geographic_location_id == '
                    'GeographicLocation.geographic_location_id',
        back_populates='geographic_location'
    )
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='GeographicLocation.geographic_location_id == InsurableObject.geographic_location_id',
        back_populates='geographic_location'
    )
 
    policy = relationship(
        'Policy',
        primaryjoin='GeographicLocation.geographic_location_id == Policy.geographic_location_id',
        back_populates='geographic_location'
    )
 
    policy_amount = relationship(
        'PolicyAmount',
        primaryjoin='GeographicLocation.geographic_location_id == PolicyAmount.geographic_location_id',
        back_populates='geographic_location'
    )
 
    location_address = relationship(
        'LocationAddress',
        primaryjoin='GeographicLocation.location_address_id == LocationAddress.location_address_id',
        back_populates='geographic_location'
    )
 
    physical_location = relationship(
        'PhysicalLocation',
        primaryjoin='GeographicLocation.physical_location_id == PhysicalLocation.physical_location_id',
        back_populates='geographic_location'
    )
 
    occurrence = relationship(
        'Occurrence',
        primaryjoin='GeographicLocation.geographic_location_id == Occurrence.geographic_location_id',
        back_populates='geographic_location'
    )
 
    rating_territory_geographic_location = relationship(
        'RatingTerritoryGeographicLocation',
        primaryjoin='GeographicLocation.geographic_location_id == '
                    'RatingTerritoryGeographicLocation.geographic_location_id',
        back_populates='geographic_location'
    )
 
    state = relationship(
        'State',
        primaryjoin='GeographicLocation.state_code == State.state_code',
        back_populates='geographic_location'
    )
 
    company_jurisdiction = relationship(
        'CompanyJurisdiction',
        primaryjoin='GeographicLocation.geographic_location_id == CompanyJurisdiction.geographic_location_id',
        back_populates='geographic_location'
    )
 
    def __repr__(self):
        return "<GeographicLocation(" \
               "geographic_location_type_code='%s', " \
               "location_code='%s', " \
               "location_name='%s', "\
               "location_number='%s', " \
               "state_code='%s', " \
               "parent_geographic_location_id='%s', " \
               "location_address_identifier='%s', " \
               "physical_location_identifier='%s', " \
               ")>" % (
                   self.geographic_location_type_code,
                   self.location_code,
                   self.location_name,
                   self.location_number,
                   self.state_code,
                   self.parent_geographic_location_id,
                   self.location_address_identifier,
                   self.physical_location_identifier
                )
 
 
class InsurableObject(Base):
    __tablename__ = 'insurable_object'
 
    insurable_object_id = Column(
        Integer,
        primary_key=True
    )
 
    insurable_object_type_code = Column(Integer)
 
    geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    geographic_location = relationship(
        'GeographicLocation',
        primaryjoin='InsurableObject.geographic_location_id == GeographicLocation.geographic_location_id',
        back_populates='insurable_object'
    )
 
    claim = relationship(
        'Claim',
        primaryjoin='InsurableObject.insurable_object_id == Claim.insurable_object_id',
        back_populates='insurable_object'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='InsurableObject.insurable_object_id == InsurableObjectPartyRole.insurable_object_id',
        back_populates='insurable_object'
    )
 
    policy_coverage_detail = relationship(
        'PolicyCoverageDetail',
        primaryjoin='InsurableObject.insurable_object_id == PolicyCoverageDetail.insurable_object_id',
        back_populates='insurable_object'
    )
 
    policy_amount = relationship(
        'PolicyAmount',
        primaryjoin='InsurableObject.insurable_object_id == PolicyAmount.insurable_object_id',
        back_populates='insurable_object'
    )
 
    object_assessment = relationship(
        'ObjectAssessment',
        primaryjoin='InsurableObject.insurable_object_id == ObjectAssessment.insurable_object_id',
        back_populates='insurable_object'
    )
 
    vehicle = relationship(
        'Vehicle',
        primaryjoin='InsurableObject.insurable_object_id == Vehicle.insurable_object_id',
        back_populates='insurable_object'
    )
 
    manufactured_object = relationship(
        'ManufacturedObject',
        primaryjoin='InsurableObject.insurable_object_id == ManufacturedObject.insurable_object_id',
        back_populates='insurable_object'
    )
 
    farm_equipment = relationship(
        'FarmEquipment',
        primaryjoin='InsurableObject.insurable_object_id == FarmEquipment.insurable_object_id',
        back_populates='insurable_object'
    )
 
    body_object = relationship(
        'BodyObject',
        primaryjoin='InsurableObject.insurable_object_id == BodyObject.insurable_object_id',
        back_populates='insurable_object'
    )
 
    workers_comp_class = relationship(
        'WorkersCompClass',
        primaryjoin='InsurableObject.insurable_object_id == WorkersCompClass.insurable_object_id',
        back_populates='insurable_object'
    )
 
    structure = relationship(
        'Structure',
        primaryjoin='InsurableObject.insurable_object_id == Structure.insurable_object_id',
        back_populates='insurable_object'
    )
 
    transportation_class = relationship(
        'TransportationClass',
        primaryjoin='InsurableObject.insurable_object_id == TransportationClass.insurable_object_id',
        back_populates='insurable_object'
    )
 
    def __repr__(self):
        return "<InsurableObject(" \
               "insurable_object_type_code='%s', " \
               "geographic_location_id='%s', " \
               ")>" % (
                   self.insurable_object_type_code,
                   self.geographic_location_id
                )
 
 
class Claim(Base):
    __tablename__ = 'claim'
 
    claim_id = Column(
        Integer,
        primary_key=True
    )
 
    occurrence_id = Column(
        Integer,
        ForeignKey('occurrence.occurrence_id')
    )
 
    catastrophe_id = Column(
        Integer,
        ForeignKey('catastrophe.catastrophe_id')
    )
 
    insurable_object_id = Column(
        Integer,
        ForeignKey('insurable_object.insurable_object_id')
    )
 
    company_claim_number = Column(Integer)
 
    company_subclaim_number = Column(Integer)
 
    claim_description = Column(String)
 
    claim_open_date = Column(Date)
 
    claim_close_date = Column(Date)
 
    claim_reopen_date = Column(Date)
 
    claim_status_code = Column(String)
 
    claim_reported_date = Column(Date)
 
    claims_made_date = Column(Date)
 
    entry_in_to_claims_made_program_date = Column(Date)
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='Claim.insurable_object_id == InsurableObject.insurable_object_id',
        back_populates='claim'
    )
 
    occurrence = relationship(
        'Occurrence',
        primaryjoin='Claim.occurrence_id == Occurrence.occurrence_id',
        back_populates='claim'
    )
 
    catastrophe = relationship(
        'Catastrophe',
        primaryjoin='Claim.catastrophe_id == Catastrophe.catastrophe_id',
        back_populates='claim'
    )
 
    claim_coverage = relationship(
        'ClaimCoverage',
        primaryjoin='Claim.claim_id == ClaimCoverage.claim_id',
        back_populates='claim'
    )
 
    claim_amount = relationship(
        'ClaimAmount',
        primaryjoin='Claim.claim_id == ClaimAmount.claim_id',
        back_populates='claim'
    )
 
    claim_folder = relationship(
        'ClaimFolder',
        primaryjoin='Claim.claim_id == ClaimFolder.claim_id',
        back_populates='claim'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='Claim.claim_id == ArbitrationPartyRole.claim_id',
        back_populates='claim'
    )
 
    claim_litigation = relationship(
        'ClaimLitigation',
        primaryjoin='Claim.claim_id == ClaimLitigation.claim_id',
        back_populates='claim'
    )
 
    claim_arbitration = relationship(
        'ClaimArbitration',
        primaryjoin='Claim.claim_id == ClaimArbitration.claim_id',
        back_populates='claim'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='Claim.claim_id == LitigationPartyRole.claim_id',
        back_populates='claim'
    )
 
    claim_assessment = relationship(
        'ClaimAssessment',
        primaryjoin='Claim.claim_id == ClaimAssessment.claim_id',
        back_populates='claim'
    )
 
    def __repr__(self):
        return "<Claim(" \
               "occurrence_id='%s', " \
               "catastrophe_id='%s', " \
               "insurable_object_id='%s', "\
               "company_claim_number='%s', " \
               "company_subclaim_number='%s', " \
               "claim_description='%s', " \
               "claim_open_date='%s', " \
               "claim_close_date='%s', " \
               "claim_reopen_date='%s', " \
               "claim_status_code='%s', " \
               "claim_reported_date='%s', "\
               "claims_made_date='%s', "\
               "entry_in_to_claims_made_program_date='%s', "\
               ")>" % (
                   self.occurrence_id,
                   self.catastrophe_id,
                   self.insurable_object_id,
                   self.company_claim_number,
                   self.company_subclaim_number,
                   self.claim_description,
                   self.claim_open_date,
                   self.claim_close_date,
                   self.claim_reopen_date,
                   self.claim_status_code,
                   self.claim_reported_date,
                   self.claims_made_date,
                   self.entry_in_to_claims_made_program_date
                )
 
 
class InsurableObjectPartyRole(Base):
    __tablename__ = 'insurable_object_party_role'
 
    insurable_object_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    insurable_object_id = Column(
        Integer,
        ForeignKey('insurable_object.insurable_object_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    effective_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    expiration_date = Column(Date)
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='InsurableObjectPartyRole.insurable_object_id == InsurableObject.insurable_object_id',
        back_populates='insurable_object_party_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='InsurableObjectPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='insurable_object_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='InsurableObjectPartyRole.party_id == Party.party_id',
        back_populates='insurable_object_party_role'
    )
 
    def __repr__(self):
        return "<InsurableObjectPartyRole(" \
               "insurable_object_id='%s', " \
               "party_role_code='%s', " \
               "effective_date='%s', "\
               "party_id='%s', " \
               "expiration_date='%s', " \
               ")>" % (
                   self.insurable_object_id,
                   self.party_role_code,
                   self.effective_date,
                   self.party_id,
                   self.expiration_date
                )
 
 
class ClaimPartyRole(Base):
    __tablename__ = 'claim_party_role'
 
    claim_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    begin_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    end_date = Column(Date)
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='ClaimPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='claim_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='ClaimPartyRole.party_id == Party.party_id',
        back_populates='claim_party_role'
    )
 
    def __repr__(self):
        return "<ClaimPartyRole(" \
               "party_role_code='%s', " \
               "begin_date='%s', " \
               "party_id='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_role_code,
                   self.begin_date,
                   self.party_id,
                   self.end_date
                )
 
 
class PartyPreference(Base):
    __tablename__ = 'party_preference'
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id'),
        primary_key=True
    )
 
    preferred_language_code = Column(Integer)
 
    party = relationship(
        'Party',
        primaryjoin='PartyPreference.party_id == Party.party_id',
        back_populates='party_preference'
    )
 
    def __repr__(self):
        return "<PartyPreference(" \
               "preferred_language_code='%s', " \
               ")>" % (
                   self.preferred_language_code
                )
 
 
class Agreement(Base):
    __tablename__ = 'agreement'
 
    agreement_id = Column(
        Integer,
        primary_key=True
    )
 
    agreement_type_code = Column(Integer)
 
    agreement_name = Column(String)
 
    agreement_original_inception_date = Column(Date)
 
    product_id = Column(
        Integer,
        ForeignKey('product.product_id')
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='Agreement.agreement_id == AgreementPartyRole.agreement_id',
        back_populates='agreement'
    )
 
    account_agreement = relationship(
        'AccountAgreement',
        primaryjoin='Agreement.agreement_id == AccountAgreement.agreement_id',
        back_populates='agreement'
    )
 
    policy = relationship(
        'Policy',
        primaryjoin='Agreement.agreement_id == Policy.agreement_id',
        back_populates='agreement'
    )
 
    agency_contract = relationship(
        'AgencyContract',
        primaryjoin='agreement.agreement_id == AgencyContract.agreement_id',
        back_populates='agreement'
    )
 
    reinsurance_agreement = relationship(
        'ReinsuranceAgreement',
        primaryjoin='Agreement.agreement_id == ReinsuranceAgreement.agreement_id',
        back_populates='agreement'
    )
 
    commercial_agreement = relationship(
        'CommercialAgreement',
        primaryjoin='Agreement.agreement_id == CommercialAgreement.agreement_id',
        back_populates='agreement'
    )
 
    brokerage_contract = relationship(
        'BrokerageContract',
        primaryjoin='Agreement.agreement_id == BrokerageContract.agreement_id',
        back_populates='agreement'
    )
 
    financial_account_agreement = relationship(
        'FinancialAccountAgreement',
        primaryjoin='Agreement.agreement_id == FinancialAccountAgreement.agreement_id',
        back_populates='agreement'
    )
 
    derivative_contract = relationship(
        'DerivativeContract',
        primaryjoin='Agreement.agreement_id == DerivativeContract.agreement_id',
        back_populates='agreement'
    )
 
    intermediary_agreement = relationship(
        'IntermediaryAgreement',
        primaryjoin='Agreement.agreement_id == IntermediaryAgreement.agreement_id',
        back_populates='agreement'
    )
 
    group_agreement = relationship(
        'GroupAgreement',
        primaryjoin='Agreement.agreement_id == GroupAgreement.agreement_id',
        back_populates='agreement'
    )
 
    commutation_agreement = relationship(
        'CommutationAgreement',
        primaryjoin='Agreement.agreement_id == CommutationAgreement.agreement_id',
        back_populates='agreement'
    )
 
    provider_agreement = relationship(
        'ProviderAgreement',
        primaryjoin='Agreement.agreement_id == ProviderAgreement.agreement_id',
        back_populates='agreement'
    )
 
    individual_agreement = relationship(
        'IndividualAgreement',
        primaryjoin='Agreement.agreement_id == IndividualAgreement.agreement_id',
        back_populates='agreement'
    )
 
    auto_repair_shop_contract = relationship(
        'AutoRepairShopContract',
        primaryjoin='Agreement.agreement_id == AutoRepairShopContract.agreement_id',
        back_populates='agreement'
    )
 
    staffing_agreement = relationship(
        'StaffingAgreement',
        primaryjoin='Agreement.agreement_id == StaffingAgreement.agreement_id',
        back_populates='staffing_agreement'
    )
 
    product = relationship(
        'Product',
        primaryjoin='Agreement.product_id == Product.product_id',
        back_populates='agreement'
    )
 
    agreement_assessment = relationship(
        'AgreementAssessment',
        primaryjoin='Agreement.agreement_id == AgreementAssessment.agreement_id',
        back_populates='agreement'
    )
 
    def __repr__(self):
        return "<Agreement(" \
               "agreement_type_code='%s', " \
               "agreement_name='%s', " \
               "agreement_original_inception_date='%s', " \
               "product_identifier='%s', " \
               ")>" % (
                   self.agreement_type_code,
                   self.agreement_name,
                   self.agreement_original_inception_date,
                   self.product_identifier
                )
 
 
class AgreementPartyRole(Base):
    __tablename__ = 'agreement_party_role'
 
    agreement_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    agreement_id = Column(
        Integer,
        ForeignKey('agreement.agreement_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    effective_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    expiration_date = Column(Date)
 
    agreement = relationship(
        'Agreement',
        primaryjoin='AgreementPartyRole.agreement_id == Agreement.agreement_id',
        back_populates='agreement_party_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='AgreementPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='agreement_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='AgreementPartyRole.party_id == Party.party_id',
        back_populates='agreement_party_role'
    )
 
    def __repr__(self):
        return "<AgreementPartyRole(" \
               "agreement_id='%s', " \
               "party_role_code='%s', " \
               "effective_date='%s', " \
               "party_id='%s', " \
               "expiration_date='%s', " \
               ")>" % (
                   self.agreement_id,
                   self.party_role_code,
                   self.effective_date,
                   self.party_id,
                   self.expiration_date
                )

I have taken a few liberties in my own implementation, such as creating surrogate keys whenever I came across a composite identifier, which should make joining easier. I’ve also chosen my own data types for ambiguous fields (such as integers for identifiers and strings for descriptions) based on my own interpretation, and chose to represent superclass/subclass relationships by making one table for each superclass and subclass, which can be joined with primary/foreign key relationships.

Installation and Deployment

To use PCDM, you need to install SQLAlchemy if you don’t already have it:

Shell
1
pip3 install sqlalchemy

You can install and deploy PCDM by cloning the repo from my GitHub. The deployment script is displayed below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import sqlalchemy as sa
 
from sqlalchemy.orm import sessionmaker
 
from pcdm.base import Base
 
from pcdm import (
    party,
    account,
    policy,
    claim,
    assessment,
    agreementrole,
    claimrole,
    staffing,
    partyst,
    insurable,
    money,
    event,
    product)
 
engine = sa.create_engine(
            'sqlite:///pcdm.db',
            echo=True
        )
session = sessionmaker(bind=engine)
Base.metadata.create_all(engine)

You can either run this script, or use the terminal to clone and then deploy:

Shell
1
2
3
git clone https://github.com/genedan/PCDM
cd PCDM
python3 deploy_sqlite.py

If the deployment succeeds, you should see a SQLite database appear with 256 tables in it:

Although SQLite is the default, you can use this repo to make your own deployments for other RDBMSs (Postgres, SQL Sever, etc.). I have not made these ports yet, but I’m assumming if you have read this far, you’re a technically savvy person who can help me out by writing your own.

Documentation

I am working on making my own documentation, which is not yet available. But for now you can refer to the official OMG PCDM document.

Bugs

Warning – this repo is open source, and hence contains no warranty and may contain bugs. You can help contribute to the effort by making an issue or pull request should you encounter a bug.

Posted in: Actuarial / Tagged: database, insurance, object management group, PCDM, property casualty data model

No. 141: MIES – Premium and Claim Transactions

5 July, 2020 10:28 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

Up until now, I’ve been able to demonstrate basic consumer behavior and certain market phenomena seen in the insurance industry. However, there’s been a major problem with MIES in that no money has actually changed hands in any of the simulations we’ve seen so far. Consumers have simply switched carriers depending on price, which allowed me to demonstrate adverse selection, but not much else. Consumption decisions involving insurance depend on wealth, but since there was no way to calculate wealth in MIES, its ability to model these decisions was limited.

The next view chapters in Varian place a heavy emphasis on wealth and risk tolerance, so this week, I made the decision to work on incorporating transactions before diving deeper into consumer behavior.

At first glance, transactions might seem like a simple thing to implement, after all, why not just keep a running cash balance for each entity, and then add and subtract payments as needed? The problem with this method is the same problem that leads companies to use double-entry accounting. Transactions are more complicated than simply sending money from one place to another. Loans are generated and capital is invested, which creates liabilities that must be considered when trying to calculate the wealth of an entity. Even something as simple as a premium payment is effectively a loan to an insurance company that needs to have a liability recorded (the unearned premium reserve), in addition to an increase in cash to the insurer.

Therefore, I’ve had to draw on my basic knowledge of accounting, which made me uneasy since I’m not an accountant myself. However, in order to get MIES to model the phenomena I want to model, and to answer the questions I have about insurance, I need to implement double-entry accounting, and eventually, statutory accounting rules. I ran across a post on Hacker News titled, ‘It’s OK for your open source library to be a bit shitty,’ which encouraged me to keep moving forward with the project despite the amount of discomfort I have.

I have certainly found many errors in MIES from past versions and there will likely be many more, including in this post. However, there’s not a lot of open source actuarial stuff out there, or in particular, open source actuarial simulations incorporating both economics concepts and double-entry accounting. Or, if there are packages out there, they aren’t easy to find. Thus, I’ve taken the step to put something out there, awaiting any feedback for things that need to fixed, and then making improvements. If this ever proves to be something useful, younger generations will create even better tools in the future.

The Bank Class

Banks facilitate transactions between insurers, brokers, customers, and other banks. While it may eventually be possible to define more than one bank per simulation, all the examples in the near future will have a single bank at which entities can deposit money and send payments to each other.

Schema

As with all the other entities, each bank comes with its own database:

Here, a bank can accept three types of customers. The customer table represents the customer superclass and references the person, insurer, and bank subclasses. Each customer can have an optional number of accounts. Any of these customers can send transactions to any other customer, including themself. Notice that the transaction table has two relationships to the account table, since the debit and credit account fields for each transaction both point to the account table.

The SQLAlchemy mapping is defined below:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, Date, Float, String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
 
 
Base = declarative_base()
 
 
class Account(Base):
    __tablename__ = 'account'
 
    account_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    account_type = Column(String)
 
    transaction_debit = relationship(
        'Transaction',
        primaryjoin='Transaction.debit_account == Account.account_id',
        back_populates='account_debit'
    )
 
    transaction_credit = relationship(
        'Transaction',
        primaryjoin='Transaction.credit_account == Account.account_id',
        back_populates='account_credit'
    )
 
    def __repr__(self):
        return "<Account(" \
               "customer_id='%s', " \
               "account_type='%s', " \
               ")>" % (
                   self.customer_id,
                   self.account_type
               )
 
 
class Transaction(Base):
    __tablename__ = 'transaction'
 
    transaction_id = Column(
        Integer,
        primary_key=True
    )
 
    debit_account = Column(
        Integer,
        ForeignKey('account.account_id')
    )
 
    credit_account = Column(
        Integer,
        ForeignKey('account.account_id')
    )
 
    transaction_date = Column(Date)
 
    transaction_amount = Column(Float)
 
    account_debit = relationship(
        "Account",
        primaryjoin='Transaction.debit_account == Account.account_id',
        back_populates='transaction_debit'
    )
 
    account_credit = relationship(
        "Account",
        primaryjoin='Transaction.credit_account == Account.account_id',
        back_populates='transaction_credit'
    )
 
    def __repr__(self):
        return "<Transaction(" \
               "debit_account='%s', " \
               "credit_account='%s', " \
               "transaction_date='%s', " \
               "transaction_amount='%s'" \
               ")>" % (
                   self.debit_account,
                   self.credit_account,
                   self.transaction_date,
                   self.transaction_amount,
               )
 
 
class Customer(Base):
    __tablename__ = 'customer'
 
    customer_id = Column(
        Integer,
        primary_key=True
    )
    customer_type = Column(String)
 
    person = relationship(
        'Person',
        primaryjoin='Customer.customer_id == Person.customer_id',
        back_populates='customer'
    )
 
    insurer = relationship(
        'Insurer',
        primaryjoin='Customer.customer_id == Insurer.customer_id',
        back_populates='customer'
    )
 
    bank = relationship(
        'Bank',
        primaryjoin='Customer.customer_id == Bank.customer_id',
        back_populates='customer'
    )
 
 
class Person(Base):
    __tablename__ = 'person'
 
    person_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Person.customer_id == Customer.customer_id',
        back_populates='person',
        uselist=True
    )
 
 
class Insurer(Base):
    __tablename__ = 'insurer'
 
    insurer_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Insurer.customer_id == Customer.customer_id',
        back_populates='insurer',
        uselist=True
    )
 
 
class Bank(Base):
    __tablename__ = 'bank'
 
    bank_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Bank.customer_id == Customer.customer_id',
        back_populates='bank',
        uselist=True
    )

Bank Methods

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import datetime as dt
import os
import pandas as pd
import sqlalchemy as sa
from sqlalchemy.orm import sessionmaker
 
import mies.schema.bank as bank
from mies.schema.bank import Account, Customer, Insurer, Person, Transaction
from mies.schema.bank import Bank as BankTable
from mies.utilities.connections import connect_universe
from mies.utilities.queries import query_bank_id
 
 
class Bank:
    def __init__(self, starting_capital, bank_name, path='db/banks/', date_established=dt.datetime(1, 12, 31)):
        if not os.path.exists(path):
            os.makedirs(path)
        self.engine = sa.create_engine(
            'sqlite:///' + path + bank_name + '.db',
            echo=True
        )
        session = sessionmaker(bind=self.engine)
        bank.Base.metadata.create_all(self.engine)
        self.session = session()
        self.connection = self.engine.connect()
        self.name = bank_name
        self.date_established = date_established
        self.id = self.__register()
        self.get_customers(self.id, 'bank')
        self.cash_account = self.assign_account(
            customer_id=self.id,
            account_type='cash'
        )
        self.capital_account = self.assign_account(self.id, 'capital')
        self.liability_account = self.assign_account(self.id, 'liability')
        self.make_transaction(
            self.cash_account,
            self.capital_account,
            self.date_established,
            starting_capital
        )
 
    def __register(self):
        # populate universe company record
        insurer_table = pd.DataFrame([[self.name]], columns=['bank_name'])
        session, connection = connect_universe()
        insurer_table.to_sql(
            'bank',
            connection,
            index=False,
            if_exists='append'
        )
        bank_id = query_bank_id(self.name)
        return bank_id
 
    def get_customers(self, ids, customer_type):
        new_customers = pd.DataFrame()
        new_customers[customer_type + '_id'] = pd.Series(ids)
        new_customers['customer_type'] = customer_type
 
        objects = []
        for index, row in new_customers.iterrows():
            if customer_type == 'person':
                customer_type_table = Person(person_id=row[customer_type + '_id'])
            elif customer_type == 'insurer':
                customer_type_table = Insurer(insurer_id=row[customer_type + '_id'])
            else:
                customer_type_table = BankTable(bank_id=row[customer_type + '_id'])
 
            customer = Customer(
                customer_type=customer_type
            )
            customer_type_table.customer.append(customer)
            objects.append(customer_type_table)
 
        self.session.add_all(objects)
        self.session.commit()
 
    def assign_accounts(self, customer_ids, account_type):
        """
        assign multiple accounts given customer ids
        """
        new_accounts = pd.DataFrame()
        new_accounts['customer_id'] = customer_ids
        new_accounts['account_type'] = account_type
 
        new_accounts.to_sql(
            'account',
            self.connection,
            index=False,
            if_exists='append'
        )
 
    def assign_account(self, customer_id, account_type):
        """
        assign a single account for a customer
        """
        account = Account(customer_id=int(customer_id), account_type=account_type)
        self.session.add(account)
        self.session.commit()
        return account.account_id
 
    def make_transaction(self, debit_account, credit_account, transaction_date, transaction_amount):
        """
        make a single transaction
        """
        transaction = Transaction(
            debit_account=int(debit_account),
            credit_account=int(credit_account),
            transaction_date=transaction_date,
            transaction_amount=transaction_amount
        )
        self.session.add(transaction)
        self.session.commit()
        return transaction.transaction_id
 
    def make_transactions(self, data: pd.DataFrame):
        """
        accepts a DataFrame to make multiple transactions
        need debit, credit, transaction date, transaction amount
        """
        data['debit_account'] = data['debit_account'].astype(int)
        data['credit_account'] = data['credit_account'].astype(int)
        data.to_sql(
            'transaction',
            self.connection,
            index=False,
            if_exists='append'
        )

Upon initialization, a bank will register itself as a customer, this allows it to have its own accounts, as well as to accept deposits from other customers. The reason why it needs to have its own accounts is because each transaction will need to have corresponding debit and credit accounts, and transactions between a bank and its customers will sometimes have one of the bank’s own accounts involved.

The method bank.get_customers() takes a list of IDs, which can be either those of people, insurers, or banks. For each of these entity IDs, the bank will create its own identifier for the customer, which can differ between that customer’s underlying ID. For example, a person with a person ID of 1, and an insurer with an insurer ID of 1, will have separate customer ids.

The method bank.assign_accounts() takes a list of customer IDs, a type of account (such as cash), and then creates that type of account for each customer.

The method bank.make_transactions() will take a list of transactions, each of which have a debit account, credit account, transaction date, and transaction volume defined, and then store them in the transactions table.

Now that we have our bank defined, I’ll walk through the insurance underwriting/claim cycle and show how the transactions that are currently available in MIES work. First, we’ll import the necessary modules, create an environment, make a population of 1000 people, and then create a bank called ‘blargo’ that has 4B in starting capital:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import datetime as dt
 
from mies.entities.bank import Bank
from mies.entities.broker import Broker
from mies.entities.god import God
from mies.entities.insurer import Insurer
from mies.utilities.queries import query_population
from utilities.queries import query_customers_by_person_id
 
ahura = God()
ahura.make_population(1000)
 
blargo = Bank(4000000, 'blargo')

Starting Wealth

Before we can issue policies to customers, we need to have a starting amount of wealth for each person so that they can actually pay for their policies. Furthermore, we also need each person to have a bank account from which they can issue payments to their insurers. To take care of these two steps, we’ll first send the person IDs to the bank, which will then create corresponding customer IDs and then establish one cash account for each customer:

Python
1
2
3
blargo.get_customers(ids=ids, customer_type='person')
customer_ids = query_customers_by_person_id(ids, 'blargo')
blargo.assign_accounts(customer_ids=customer_ids, account_type='cash')

This action populates two tables. The person table contains a record of all 1000 people, and the customer table has 1001 records, since each person becomes a customer, but the bank itself is already its own customer:

In the next step, we’ll use a new method called grant_wealth() which the environment uses to give each person a starting amount of wealth. Since wealth is not evenly distributed in society, I’ve drawn these values from the Pareto distribution:

1
ahura.grant_wealth(person_ids=ids, bank=blargo, transaction_date=pricing_date)

The method is defined as follows:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class God:
...
    def grant_wealth(
            self,
            person_ids,
            bank: Bank,
            transaction_date
    ):
        """
        assign an initial amount of starting wealth per person
        """
        accounts = query_accounts_by_person_id(
            person_ids,
            bank.name,
            'cash'
        )
        accounts['transaction_amount'] = pareto.rvs(
            b=1,
            scale=pm.person_params['income'],
            size=accounts.shape[0],
        )
        accounts = accounts[[
            'account_id',
            'transaction_amount'
        ]]
        accounts = accounts.rename(columns={
            'account_id': 'debit_account'
        })
        accounts['credit_account'] = bank.liability_account
        accounts['transaction_date'] = transaction_date
        bank.make_transactions(accounts)
...

This action deposits wealth in each person’s cash account. This is marked as the debit side of the transaction, the credit side is the liability that the bank takes on by accepting the deposits, since deposits are loans to the bank:

Policy Inception

Before we issue policies, we need to create two more entities in the simulation. One, a broker called ‘rayon’ and an insurer called ‘company_1.’ Initializing a company now requires two new arguments, a bank with which it associates, and its inception date. These new arguments are used to create bank accounts for the insurer:

Python
1
2
3
4
5
6
7
8
9
rayon = Broker()
 
company_1 = Insurer(4000000, blargo, pricing_date, 'company_1')
 
company_1_formula = 'incurred_loss ~ ' \
                    'age_class + ' \
                    'profession + ' \
                    'health_status + ' \
                    'education_level'

We’ll now use the broker rayon to place the customers with the insurer. This method also has a bank as a new argument, which will be used to facilitate the transactions:

Python
1
2
3
4
5
rayon.place_business(
        pricing_date,
        blargo,
        company_1
    )

This action creates a policy record for each insurer, which I won’t show here since I’ve already done so in a previous post. What has changed however, is that each person needs to pay the premium to the insurer up front. The broker is able to tell the bank to create a transaction for each premium payment. This time, the debit account is the insurer’s cash account, and the credit account is the person’s cash account. In the picture below, we see that there are 1000 additional transactions starting with transaction_id 1003 (1002 was used to seed insurer capital). The debit account on all these transactions is account ID 1004, which is the insurer’s cash account:

In reality, a corresponding liability should also be created in the insurer’s accounting system. This is called the unearned premium reserve which is what the insured is entitled to recieve if their policy gets canceled. This feature is not yet implemented in MIES, but it’s an important liability to consider in insurance.

Loss Occurrence

Now that we have our policies issued, we’re ready to simulate some losses:

Python
1
2
3
event_date = pricing_date + dt.timedelta(days=1)
 
ahura.smite(event_date)

This action produced 57 loss events, which can be found in the events table in the universe database:

Claim Reporting

These losses are not considered claims until they are reported to the insurer. Otherwise, the insurer has no knowledge that they occurred:

Python
1
rayon.report_claims(event_date)

This method has changed from last week. The loss amounts are now reported as case reserves, which are estimates made by an insurer on how much they will need to pay for the claim. This is now distinguished from paid losses, which are the actual payments the insurer makes to the insured:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Broker:
...
    def report_claims(self, report_date):
        # match events to policies in which they are covered
 
        events = query_events_by_report_date(report_date)
 
        policies = query_all_policies()
 
        claims = events.merge(
            policies,
            on='person_id',
            how='left'
        )
        claims = claims.query(
            'event_date >= effective_date '
            'and event_date <= expiration_date'
        )
 
        claims = claims.drop([
            'effective_date',
            'expiration_date',
            'premium',
            'company_id'
        ], axis=1)
 
        companies = get_company_names()
 
        for company in companies:
 
            # register claims by id
 
            reported_claims = claims[claims['company_name'] == company]
 
            reported_claims = reported_claims.rename(columns={
                'event_date': 'occurrence_date'
            })
 
            reported_claims = reported_claims.drop(['company_name'], axis=1)
 
            session, connection = connect_company(company)
 
            objects = []
            for index, row in reported_claims.iterrows():
                claim = Claim(
                    policy_id=row['policy_id'],
                    person_id=row['person_id'],
                    event_id=row['event_id'],
                    occurrence_date=row['occurrence_date'],
                    report_date=row['report_date']
                )
                open_claim = ClaimTransaction(
                    transaction_date=row['report_date'],
                    transaction_type='open claim',
                    transaction_amount=0
                )
                case_reserve = ClaimTransaction(
                    transaction_date=row['report_date'],
                    transaction_type='set case reserve',
                    transaction_amount=row['ground_up_loss']
                )
                claim.claim_transaction.append(open_claim)
                claim.claim_transaction.append(case_reserve)
                objects.append(claim)
 
            session.add_all(objects)
            session.commit()
 
            connection.close()

This action creates two transactions for each claim. One transaction, called ‘open claim’ signals that a claim has been created. Another transaction, called ‘set case reserve,’ sets a case reserve for each claim. Since there are 57 losses, there are 57 claims, and 114 transactions:

Notice that we have some fairly restrictive assumptions for the simulation. The case reserves are equal to the ground up losses, and all 57 losses are reported to and known by the insurer immediately. This is not the case in the real world, where an insurer does not know how much claims will cost until they are settled, and may not know about claims until many years after they have occurred. We’ll need to revisit this problem in the future, since estimating claim amounts, including those on unreported claims, is a core function of actuarial science.

Claim Settlement

Let’s close these claims by issuing payments:

Python
1
company_1.pay_claims(event_date + dt.timedelta(days=1))

Insurer.pay_claims() is a new method used to send checks to the insureds for indemnification:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def pay_claims(self, transaction_date):
        # send checks to bank
        case_reserves = query_open_case_reserves(self.company_name)
 
        accounts_to_pay = query_accounts_by_person_id(
            case_reserves['person_id'],
            self.bank.name, 'cash'
        )
 
        case_reserves = case_reserves.merge(
            accounts_to_pay,
            on='person_id',
            how='left'
        )
 
        case_reserves['transaction_date'] = transaction_date
 
        case_reserves = case_reserves.rename(columns={
            'case reserve': 'transaction_amount',
            'account_id': 'debit_account'
        })
 
        case_reserves['credit_account'] = self.cash_account
 
        payments = case_reserves[[
            'debit_account',
            'credit_account',
            'transaction_date',
            'transaction_amount']].copy()
 
        self.bank.make_transactions(payments)
 
        # people then use checks to pay their for their own losses
 
        payments['credit_account'] = payments['debit_account']
        payments['debit_account'] = self.bank.liability_account
 
        self.bank.make_transactions(payments)
 
 
        # reduce case reserves
 
        objects = []
 
        for index, row in case_reserves.iterrows():
            reserve_takedown = ClaimTransaction(
                claim_id = row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='reduce case reserve',
                transaction_amount=row['transaction_amount']
            )
            claim_payment = ClaimTransaction(
                claim_id=row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='claim payment',
                transaction_amount=row['transaction_amount']
            )
            close_claim = ClaimTransaction(
                claim_id=row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='close claim',
                transaction_amount=0
            )
            objects.append(reserve_takedown)
            objects.append(claim_payment)
            objects.append(close_claim)
 
        self.session.add_all(objects)
        self.session.commit()

There’s a lot going on here, so I’ll break it down. The payments to the insureds are handled first. We can see this by going to the transactions table in the bank database:

Notice that there are 114 additional transactions, two for each of the 57 claims. One transaction sends a payment from the insurer to the customer. You can see this since the debit account is the cash account of the customer, and the credit accont (1004) is the cash account of the insurer. The other transaction is a payment from the insured to whomever they owe money to due to the loss. The debit side of the transaction is now a reduction in the bank’s liability account, and the credit amount is a reduction in cash equal to the claim amount for the insured:

Next, three transactions are entered for each claim into the insurer’s database:

  1. Reduce case reserve
  2. Claim payment
  3. Close claim

‘Reduce case reserve’ is a reduction in the claims reserve to zero, signifying that the insurer no longer owes money to the insured. The ‘claim payment’ is a corresponding transaction representing the actual payment, and ‘close claim’ is a transaction that indicates that the claim is now closed. The insurer now has 5 claims transactions for each claim, 57 x 5 = 285 transactions in total. These five transactions are: 1) open claim, 2) set case reserve, 3) reduce case reserve 4) claim payment, and 5) close claim.

One source of confusion I had is that this way of recording transactions does not have the double-entry accounting that you’d see in a general ledger. Indeed, this form is more common for actuarial pricing modelers who do not usually need to get into the finer details of debits and credits. However, I’m leaning towards changing the claims transaction tables to also be double-entry, since doing so also makes things easier to program and avoids questions with negative values. For example, I had to think about whether to record case reserve reductions as a positive or negative value. This confusion is not present if I record them as credit and debit amounts.

Consumer Income

Each person now gets a paycheck during each period. This can be issued by the environment class:

Python
1
ahura.send_paychecks(person_ids=ids, bank=blargo, transaction_date=event_date + dt.timedelta(days=1))

There’s nothing too special about this method, it just debits each person’s cash account by their income amount:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class God:
...
    def send_paychecks(self, person_ids, bank: Bank, transaction_date):
        incomes = query_incomes(person_ids)
        incomes.columns = ['person_id', 'transaction_amount']
 
        accounts = query_accounts_by_person_id(
            person_ids,
            bank.name,
            'cash'
        )
 
        accounts = accounts.merge(incomes, on='person_id', how='left')
 
        accounts = accounts.rename(columns={
            'account_id': 'debit_account'
        })
        accounts['credit_account'] = bank.liability_account
        accounts['transaction_date'] = transaction_date
        accounts = accounts.drop([
            'person_id',
            'customer_id'
        ], axis=1)
        bank.make_transactions(accounts)

An additional 1000 transactions have been recorded, one for each customer. As with wealth, the debit side of the transaction is the person’s cash account, with a corresponding credit to the bank’s liability account:

Policy Pricing

Now that the claims have been reported and settled, the insurer can use this information to recalibrate the premium for each customer. However, unlike last week, claim amounts are not stored as a single column called ‘incurred_loss’, but now must be calculated from the transaction amounts. To handle this, I created a set of queries that can be used to return the case reserves, paid losses, and incurred amounts for each claim:

Python
1
2
3
4
from utilities.queries import query_case_by_claim
from utilities.queries import query_paid_by_claim
from utilities.queries import query_incurred_by_claim
from utilities.queries import query_pricing_model_data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def query_case_by_claim(company_name):
    session, connection = connect_company(company_name)
 
    claim_policy = session.query(
        Claim.claim_id,
        Claim.policy_id
    ).subquery()
 
    case_set = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('set')
    ).filter(ClaimTransaction.transaction_type == 'set case reserve').group_by(ClaimTransaction.claim_id).subquery()
 
    case_takedown = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('takedown')
    ).filter(ClaimTransaction.transaction_type == 'reduce case reserve').group_by(ClaimTransaction.claim_id).subquery()
 
    case_query = session.query(
        case_set.c.claim_id,
        (func.ifnull(case_set.c.set, 0) - func.ifnull(case_takedown.c.takedown, 0)).label('case_reserve')
    ).outerjoin(case_takedown, case_set.c.claim_id == case_takedown.c.claim_id).subquery()
 
    claim_case = session.query(
        claim_policy.c.claim_id,
        claim_policy.c.policy_id,
        func.ifnull(case_query.c.case_reserve, 0).label('case_reserve')
    ).outerjoin(case_query, claim_policy.c.claim_id == case_query.c.claim_id).statement
 
    case_reserve = pd.read_sql(claim_case, connection)
 
    connection.close()
 
    return case_reserve
 
 
def query_paid_by_claim(company_name):
    session, connection = connect_company(company_name)
 
    claim_policy = session.query(
        Claim.claim_id,
        Claim.policy_id
    ).subquery()
 
    payment_query = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('paid_loss')
    ).filter(ClaimTransaction.transaction_type == 'claim payment').group_by(ClaimTransaction.claim_id).subquery()
 
    claim_paid = session.query(
        claim_policy.c.claim_id,
        claim_policy.c.policy_id,
        func.ifnull(payment_query.c.paid_loss, 0).label('paid_loss')
    ).outerjoin(payment_query, claim_policy.c.claim_id == payment_query.c.claim_id).statement
 
    claim_payments = pd.read_sql(claim_paid, connection)
 
    connection.close()
 
    return claim_payments
 
 
def query_incurred_by_claim(company_name):
 
    case = query_case_by_claim(company_name)
    case = case.drop(columns=['policy_id'], axis=1)
 
    paid = query_paid_by_claim(company_name)
 
    incurred = paid.merge(case, on='claim_id', how='left')
 
    incurred['incurred_loss'] = incurred['paid_loss'] + incurred['case_reserve']
 
    return incurred
 
def query_pricing_model_data(company_name):
    session, connection = connect_company(company_name)
 
    policy_query = session.query(
        Policy.policy_id,
        Policy.person_id,
        Customer.age_class,
        Customer.profession,
        Customer.health_status,
        Customer.education_level,
        ).outerjoin(
            Customer,
            Policy.person_id == Customer.person_id
        ).statement
 
    policy = pd.read_sql(policy_query, connection)
 
    claim = query_incurred_by_claim(company_name)
 
    claim = claim.drop(columns=['claim_id', 'paid_loss', 'case_reserve'], axis=1)
 
    claim = claim.groupby(['policy_id'])['incurred_loss'].agg('sum')
 
    model_set = policy.merge(claim, on='policy_id', how='left')
 
    model_set['incurred_loss'] = model_set['incurred_loss'].fillna(0)
 
    return model_set

We mostly need to be concerned about the last one of these, query_pricing_model_data() which uses the first three to combine policy and claim information together, which can be priced with a GLM:

Python
1
query_pricing_model_data('company_1')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Out[15]:
     policy_id  person_id age_class profession health_status education_level  \
0            1          1         E          A             P               H  
1            2          2         E          B             F               P  
2            3          3         Y          C             F               H  
3            4          4         M          C             F               H  
4            5          5         M          A             P               P  
..         ...        ...       ...        ...           ...             ...  
995        996        996         M          B             P               H  
996        997        997         E          A             P               H  
997        998        998         E          B             G               H  
998        999        999         M          A             G               P  
999       1000       1000         M          C             G               H  
     incurred_loss  
0              0.0  
1              0.0  
2              0.0  
3              0.0  
4              0.0  
..             ...  
995            0.0  
996            0.0  
997            0.0  
998            0.0  
999            0.0  
[1000 rows x 7 columns]

Since most people don’t have a claim, most incurred loss amounts are zero. This data set can then be used by the insurer to reprice with a GLM, and the new pricing algorithm is used by the broker to quote and place business:

1
2
3
4
5
6
7
company_1.price_book(company_1_formula)
 
rayon.place_business(
        pricing_date,
        blargo,
        company_1
    )

Further Improvements

Now that I’ve got transactions modeled, I can calculate the wealth for each entity in the simulation. This is key piece required to make further changes to the way consumer preferences work in MIES, which will soon incorporate risk tolerance and wealth.

Posted in: Actuarial, Mathematics, MIES

Archives

  • September 2023
  • February 2023
  • January 2023
  • October 2022
  • March 2022
  • February 2022
  • December 2021
  • July 2020
  • June 2020
  • May 2020
  • May 2019
  • April 2019
  • November 2018
  • September 2018
  • August 2018
  • December 2017
  • July 2017
  • March 2017
  • November 2016
  • December 2014
  • November 2014
  • October 2014
  • August 2014
  • July 2014
  • June 2014
  • February 2014
  • December 2013
  • October 2013
  • August 2013
  • July 2013
  • June 2013
  • March 2013
  • January 2013
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • January 2011
  • December 2010
  • October 2010
  • September 2010
  • August 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • September 2009
  • August 2009
  • May 2009
  • December 2008

Categories

  • Actuarial
  • Cycling
  • Logs
  • Mathematics
  • MIES
  • Music
  • Uncategorized

Links

Cyclingnews
Jason Lee
Knitted Together
Megan Turley
Shama Cycles
Shama Cycles Blog
South Central Collegiate Cycling Conference
Texas Bicycle Racing Association
Texbiker.net
Tiffany Chan
USA Cycling
VeloNews

Texas Cycling

Cameron Lindsay
Jacob Dodson
Ken Day
Texas Cycling
Texas Cycling Blog
Whitney Schultz
© Copyright 2025 - Gene Dan's Blog
Infinity Theme by DesignCoral / WordPress