• Home
  • Readings
  • Github
  • MIES
  • TmVal
  • About
Gene Dan's Blog

Author Archives: Gene Dan

No. 142: The Property Casualty Data Model Specification

12 July, 2020 10:31 PM / 4 Comments / Gene Dan

Introduction

A few weeks ago, I stumbled across something neat – the Property Casualty Data Model (PCDM). PCDM is a relational database specification that covers all major parts of an insurance company’s operations. At first glance, the web page on which it is located seemed mundane to me, so I almost overlooked it, but when I opened the accompanying documentation, I realized I had stumbled upon a goldmine of useful information. This document contains enough information to implement an entire data warehouse and then tweak it to an organization’s specific needs.

Although we actuaries have a reputation for being able to handle data, most of us have not received any kind of formal training in handling relational database systems, and have had little interaction with standards organizations outside of our own governing organizations like the CAS, SOA, and AAA. When I tried searching for PCDM in the CAS library, I was astonished to find just a handful of references to the specification, and flabbergasted that there had been a document floating around on another profession’s website for the last seven years that almost no actuaries had ever heard about, but contained the exact type of information that many actuaries wanted but thought had never existed in the public domain (and in my case, it contains more than what I need for parts of the MIES backend).

One benefit that I’ve had from working several jobs, and also as a consultant, is that I’ve been able to witness widely varying levels of maturity of data warehouse systems at commercial insurance companies of different sizes and functions (specialty, commercial, and reinsurance) as well as those of a major stock exchange to get some perspective of how insurance database implementations compare to those of other industries. I have seen many actuaries at small and midsize carriers struggle with how to create OLAP data warehouses, not knowing what tables, relationships, and fields to define, how to do it in a way that conforms to commonly accepted data management practices (if they even knew what they were), or even where to look or whom to talk to to find out what data are stored at the company, and in what form.

Earlier in my career, at a small insurer, a few years before this document existed, I would sometimes encounter databases with hundreds of undocumented tables, not knowing what any of the tables stored, if they were the right tables I needed, or if they were designed appropriately. I was one of the few actuaries in my department who knew SQL (and even then, I wasn’t good at it). So, with my introductory textbook on database management systems at my side and a landline I used to contact people in the IT deparment, I embarked upon the long journey of understanding insurance information systems.

In those days, the game kind of went like this. I would ask my boss if they knew anyone in IT, then I’d pick up the phone and call them to ask if they maintained the database I was looking at or knew of anyone who did or anyone who might know anyone who did. That chain of phone calls typically went 5 people deep until I finally reached someone who actually worked on the relevant database, and if I was lucky, they’d have some documentation, and I’d slowly figure out what kind of data I was working with.

It might have looked like this. What the hell? Boss, this is gonna take me a while to understand. (Actually this is PCDM, but the good news about PCDM is that it’s documented – but imagine what it would be like if it weren’t and the last person who touched it left 3 years ago).

When I moved to a larger organization, I came to realize how large of a knowledge/talent gap there was between companies when I actually got to use a well-documented data warehouse that had all the entities, relationships, and fields defined as well a data dictionary detailing what all the values were – a rare practice that even many established insurers don’t follow. Unfortunately, when I left that organization, I also lost access to that documentation, and with it, a wealth of knowledge on what a proper data warehouse should look like.

I had thought to myself if only the CAS had a standard that actuaries and students could access, we’d have something that would actually resemble what a database at a real insurer actually looked like, instead of just having just theoretical papers from which to learn that might have some code copy-pasted in. If we had a standard, knowledge of proper database design and implementation would then not be employer dependent, and new research papers could reference the standard rather than just imagining what a data warehouse would look like or omitting proprietary parts of a company’s database.

When I came across PCDM, I realized the significance of a document I randomly found while eating breakfast on holiday. Therefore, I immediately got to work in writing an implementation of it in Python so that other actuaries could finally have what I wish I had when I was younger. I completed the first release at the end of the July 4th weekend, and made it available on GitHub. My hope is that somebody out there finds this post and clones my repository – and understands how important it is to spread word of this specification.

Subject Area Models

PCDM details 13 subject area models (SAMs), each of which comes with an entity-relationship (ER) diagram. Each subject area model represents a major portion of an insurance company’s operations:

  1. Party
  2. Account and Agreement
  3. Policy
  4. Claim
  5. Assessment
  6. Agreement Role
  7. Claim Role
  8. Staffing Role
  9. Party Subtype
  10. Insurable
  11. Money
  12. Event
  13. Product Coverage

For example, the Party SAM contains information on all parties that are involved in insurance transactions, such as households, employees, vendors, etc. Other SAMs contain information on underwriting, claims, and accounting operations. The rest of this post will show you what those SAMs look like – the images are crowded and contain quite a bit of information, so it’s best to click on them to see them in full resolution. If you want more details, the PCDM document is available on the object management group website.

Party

As stated before, the Party SAM contains information about households, firms, and staff:

Account and Agreement

The Account and Agreement SAM contains information on legal agreements, such as policies, reinsurance contracts, etc.

Policy

The Policy SAM contains information on…policies. Policy number, effective date, expiration date, limits, deductibles, coverage, etc.

Claim

The Claim SAM contains information on claims, relevant dates, adjusters, lawyers, damage amounts, etc.

Assessment

The Assessment SAM contains information on how the insurer goes about gathering information, such as credit scores, appraisals, and investigations carried out during the claim adjustment and underwriting processes.

Agreement

The Agreement Role SAM contains information on the different types of parties that might be involved in insurance – mostly an expansion of the Party Role superclass found in the Party SAM.

Claim Role

The Claim Role SAM contains information on the parties involved in the adjustment process, such as adjusters, claimants, lawyers, etc.

Staffing Role

The Staffing Role SAM contains information on insurance company staff and contractors.

Party Subtype

The Party Subtype SAM contains information on company subdivisions.

Insurable Object

The Insurable Object SAM contains information on things that can be insured, like cars and buildings.

Money

The Money SAM contains information on transactions, like premium, loss payments, and case reserves.

Event

The Event SAM contains information on policy and claim events, like policy inception, cancelation, and claim occurrence.

Product Coverage

The Product Coverage SAM contains inforamtion on product types and coverages.

Python/SQLAlchemy Implementation

I figured if I want to claim credit for anything besides just copying and pasting the diagrams above from the specification, I should actually make some kind of contribution. The good news is I haven’t found any kind of implementation on GitHub – what I mean by that is the PDF is nice to have and all, but you can’t deploy a datawarehouse with the PDF, it needs to be translated into code which people can then use to deploy the warehouse. Therefore, I’ve written my own implemntation of PCDM in Python using the SQLAlchemy ORM.

Below is an example of how I translated the Party SAM into code. I did this for the 12 other SAMs as well, and then wrote another module to combine them all together into a single deployable data warehouse:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
from sqlalchemy import Column, Integer, Date, String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
 
from pcdm.base import Base
 
 
class Person(Base):
    __tablename__ = 'person'
 
    person_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    prefix_name = Column(String)
 
    first_name = Column(String)
 
    middle_name = Column(String)
 
    last_name = Column(String)
 
    suffix_name = Column(String)
 
    full_legal_name = Column(String)
 
    nickname = Column(String)
 
    birth_date = Column(Date)
 
    birth_place_name = Column(String)
 
    gender_code = Column(String)
 
    person_profession = relationship(
        'PersonProfession',
        primaryjoin='Person.person_id == PersonProfession.person_id',
        back_populates='person'
    )
 
    staff_work_assignment = relationship(
        'Person',
        primaryjoin='Person.person_id == StaffWorkAssignment.person_id',
        back_populates='person'
    )
 
    household_person = relationship(
        'Person',
        primaryjoin='Person.person_id == HouseholdPerson.person_id',
        back_populates='person'
    )
 
    party = relationship(
        'Person',
        primaryjoin='Person.party_id == Party.party_id',
        back_populates='person'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='Person.person_id == HouseholdPersonRole.person_id',
        back_populates='person'
    )
 
    party_assessment = relationship(
        'PartyAssessment',
        primaryjoin='Person.person_id == PartyAssessment.person_id',
        back_populates='person'
    )
 
    staff_position_assignment = relationship(
        'StaffPositionAssignment',
        primaryjoin='Person.person_id == StaffPositionAssignment.person_id',
        back_populates='person'
    )
 
    def __repr__(self):
        return "<Person(" \
               "prefix_name='%s', " \
               "first_name='%s', " \
               "middle_name='%s', "\
               "last_name='%s', " \
               "suffix_name='%s', " \
               "full_legal_name='%s', " \
               "nickname='%s', " \
               "birth_date='%s', " \
               "birth_place_name='%s', " \
               "gender_code='%s', "\
               ")>" % (
                   self.prefix_name,
                   self.first_name,
                   self.middle_name,
                   self.last_name,
                   self.suffix_name,
                   self.full_legal_name,
                   self.nickname,
                   self.birth_date,
                   self.birth_place_name,
                   self.gender_code
                )
 
 
class PersonProfession(Base):
    __tablename__ = 'person_profession'
 
    person_profession_id = Column(
        Integer,
        primary_key=True
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    profession_name = Column(String)
 
    person = relationship(
        'Person',
        primaryjoin='PersonProfession.person_id == Person.person_id',
        back_populates='person_profession'
    )
 
    def __repr__(self):
        return "<PersonProfession(" \
            "person_id='%s', " \
            "profession_name='%s', " \
            ")>" % (
                self.person_id,
                self.profession_name
            )
 
 
class Organization(Base):
    __tablename__ = 'organization'
 
    organization_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    organization_type_code = Column(Integer)
 
    organization_name = Column(String)
 
    alternate_name = Column(String)
 
    acronym_name = Column(String)
 
    industry_type_code = Column(String)
 
    industry_code = Column(String)
 
    dun_and_bradstreet_id = Column(String)
 
    organization_description = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='Organization.organization_id == StaffWorkAssignment.organization_id',
        back_populates='organization'
    )
 
    party = relationship(
        'Party',
        primaryjoin='Organization.party_id == Party.party_id',
        back_populates='organization'
    )
 
    staff_position_assignment = relationship(
        'StaffPositionAssignment',
        primaryjoin='Organization.organization_id == StaffPositionAssignment.organization_id',
        back_populates='organization'
    )
 
    organization_unit = relationship(
        'OrganizationUnit',
        primaryjoin='Organization.organization_id == OrganizationUnit.organization_id',
        back_populates='organization'
    )
 
    for_profit_organization = relationship(
        'ForProfitOrganization',
        primaryjoin='Organization.organization_id == ForProfitOrganization.organization_id',
        back_populates='organization'
    )
 
    government_organization = relationship(
        'GovernmentOrganization',
        primaryjoin='Organization.organization_id == GovernmentOrganization.organization_id',
        back_populates='organization'
    )
 
    not_for_profit_organization = relationship(
        'NotForProfitOrganization',
        primaryjoin='Organization.organization_id == NotForProfitOrganization.organization_id',
        back_populates='organization'
    )
 
    def __repr__(self):
        return "<Organization(" \
               "party_id='%s', " \
               "organization_type_code='%s', " \
               "organization_name='%s', " \
               "alternate_name='%s', "\
               "acronym_name='%s', " \
               "industry_type_code='%s', " \
               "industry_code='%s', " \
               "dun_and_bradstreet_id='%s', " \
               "organization_description='%s', " \
               ")>" % (
                   self.party_id,
                   self.organization_type_code,
                   self.organization_name,
                   self.alternate_name,
                   self.acronym_name,
                   self.industry_type_code,
                   self.industry_code,
                   self.dun_and_bradstreet_id,
                   self.organization_description
                )
 
 
class HouseholdPerson(Base):
    __tablename__ = 'household_person' \
                    ''
    household_person_id = Column(
        Integer,
        primary_key=True
    )
 
    household_id = Column(
        Integer,
        ForeignKey('household.household_id')
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    household = relationship(
        'Household',
        primaryjoin='HouseholdPerson.household_id == Household.household_id',
        back_populates='household_person'
    )
 
    person = relationship(
        'Household',
        primaryjoin='HouseholdPerson.person_id == Person.person_id',
        back_populates='household_person'
    )
 
    def __repr__(self):
        return "<HouseholdPerson(" \
               "household_id='%s', " \
               "person_id='%s', " \
               ")>" % (
                   self.household_id,
                   self.person_id,
                )
 
 
class HouseholdPersonRole(Base):
    __tablename__ = 'household_person_role'
 
    household_person_role_id = Column(
        Integer,
        primary_key=True
    )
 
    household_id = Column(
        Integer,
        ForeignKey('household.household_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    begin_date = Column(Date)
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    end_date = Column(Date)
 
    household = relationship(
        'Household',
        primaryjoin='HouseholdPersonRole.household_id == Household.household_id',
        back_populates='household_person_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='HouseholdPersonRole.party_role_code == PartyRole.party_role_code',
        back_populates='household_person_role'
    )
 
    person = relationship(
        'Person',
        primaryjoin='HouseholdPersonRole.person_id == Person.person_id',
        back_populates='household_person_role'
    )
 
    def __repr__(self):
        return "<HouseholdPersonRole(" \
               "household_id='%s', " \
               "party_role_code='%s', " \
               "begin_date='%s', "\
               "person_id='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.household_id,
                   self.party_role_code,
                   self.begin_date,
                   self.person_id,
                   self.end_date
                )
 
 
class Household(Base):
    __tablename__ = 'household'
 
    household_id = Column(
        Integer,
        primary_key=True
    )
 
    grouping_id = Column(
        Integer,
        ForeignKey('grouping.grouping_id')
    )
 
    household_person = relationship(
        'HouseholdPerson',
        primaryjoin='Household.household_id == HouseholdPerson.household_id',
        back_populates='household'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='Household.grouping_id == Grouping.grouping_id',
        back_populates='household'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='Household.household_id == HouseholdPersonRole.household_id',
        back_populates='household'
    )
 
    household_content = relationship(
        'HouseholdContent',
        primaryjoin='Household.household_id == HouseholdContent.household_id',
        back_populates='household'
    )
 
    def __repr__(self):
        return "<Household(" \
               "grouping_id='%s', " \
               ")>" % (
                   self.grouping_id
                )
 
 
class StaffWorkAssignment(Base):
    __tablename__ = 'staff_work_assignment'
 
    staff_work_assignment_id = Column(
        Integer,
        primary_key=True
    )
 
    person_id = Column(
        Integer,
        ForeignKey('person.person_id')
    )
 
    organization_id = Column(
        Integer,
        ForeignKey('organization.organization_id')
    )
 
    grouping_id = Column(
        Integer,
        ForeignKey('grouping.grouping_id')
    )
 
    begin_date = Column(Date)
    party_role_code = Column(
        Integer,
        ForeignKey('party_role.party_role_code')
    )
    end_date = Column(Date)
 
    person = relationship(
        'Person',
        primaryjoin='StaffWorkAssignment.person_id == Person.person_id',
        back_populates='staff_work_assignment'
    )
 
    organization = relationship(
        'Organization',
        primaryjoin='StaffWorkAssignment.organization_id == Organization.organization_id',
        back_populates='staff_work_assignment'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='StaffWorkAssignment.grouping_id == Grouping.grouping_id',
        back_populates='staff_work_assignment'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='StaffWorkAssignment.party_role_code == PartyRole.party_role_code',
        back_populates='staff_work_assignment'
    )
 
    def __repr__(self):
        return "<StaffWorkAssignment(" \
               "person_id='%s', " \
               "organization_id='%s', " \
               "grouping_id='%s', "\
               "begin_date='%s', " \
               "party_role_code='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.person_id,
                   self.organization_id,
                   self.grouping_id,
                   self.begin_date,
                   self.party_role_code,
                   self.end_date
                )
 
 
class Grouping(Base):
    __tablename__ = 'grouping'
 
    grouping_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    grouping_name = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='Grouping.grouping_id == StaffWorkAssignment.grouping_id',
        back_populates='grouping'
    )
 
    party = relationship(
        'Party',
        primaryjoin='Grouping.party_id == party.party_id',
        back_populates='grouping'
    )
 
    household = relationship(
        'Household',
        primaryjoin='Grouping.grouping_id == Household.grouping_id',
        back_populates='grouping'
    )
 
    professional_group = relationship(
        'ProfessionalGroup',
        primaryjoin='Grouping.grouping_id == ProfessionalGroup.grouping_id',
        back_populates='grouping'
    )
 
    project = relationship(
        'Project',
        primaryjoin='Grouping.grouping_id == Project.grouping_id',
        back_populates='grouping'
    )
 
    team = relationship(
        'Team',
        primaryjoin='Grouping.grouping_id == Team.grouping_id',
        back_populates='grouping'
    )
 
    def __repr__(self):
        return "<Grouping(" \
               "party_id='%s', " \
               "grouping_name='%s', " \
               ")>" % (
                   self.party_id,
                   self.grouping_name
                )
 
 
class PartyRole(Base):
    __tablename__ = 'party_role'
 
    party_role_code = Column(
        String,
        primary_key=True
    )
 
    party_role_name = Column(String)
 
    party_role_description = Column(String)
 
    staff_work_assignment = relationship(
        'StaffWorkAssignment',
        primaryjoin='PartyRole.party_role_code == StaffWorkAssignment.party_role_code',
        back_populates='party_role'
    )
 
    party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRole.party_role_code == PartyRelationshipRole.party_role_code',
        back_populates='party_role'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='Party.party_role_code == InsurableObjectPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    claim_party_role = relationship(
        'ClaimPartyRole',
        primaryjoin='PartyRole.party_role_code == ClaimPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='PartyRole.party_role_code == AgreementPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    household_person_role = relationship(
        'HouseholdPersonRole',
        primaryjoin='PartyRole.party_role_code == HouseholdPersonRole.party_role_code',
        back_populates='party_role'
    )
 
    account_party_role = relationship(
        'AccountPartyRole',
        primaryjoin='PartyRole.party_role_code == AccountPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    provider = relationship(
        'Provider',
        primaryjoin='PartyRole.party_role_code == Provider.party_role_code',
        back_populates='party_role'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='PartyRole.party_role_code == ArbitrationPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='PartyRoleCode.party_role_code == LitigationPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    assessment_party_role = relationship(
        'AssessmentPartyRole',
        primaryjoin='PartyRole.party_role_code == AssessmentPartyRole.party_role_code',
        back_populates='party_role'
    )
 
    claim_role = relationship(
        'ClaimRole',
        primaryjoin='PartyRole.party_role_code == ClaimRole.party_role_code',
        back_populates='party_role'
    )
 
    adjuster = relationship(
        'Adjuster',
        primaryjoin='PartyRole.party_role_code == Adjuster.party_role_code',
        back_populates='party_role'
    )
 
    staffing_organization = relationship(
        'StaffingOrganization',
        primaryjoin='PartyRole.party_role_code == StaffingOrganization.party_role_code',
        back_populates='party_role'
    )
 
    staff = relationship(
        'Staff',
        primaryjoin='PartyRole.party_role_code == Staff.party_role_code',
        back_populates='party_role'
    )
 
    def __repr__(self):
        return "<PartyRole(" \
               "party_role_name='%s', " \
               "party_role_description='%s', " \
               ")>" % (
                   self.party_role_name,
                   self.party_role_description
                )
 
 
class Party(Base):
    __tablename__ = 'party'
 
    party_id = Column(
        Integer,
        primary_key=True
    )
 
    party_name = Column(String)
 
    party_type_code = Column(String)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    person = relationship(
        'Person',
        primaryjoin='Party.party_id == Person.party_id',
        back_populates='party'
    )
 
    grouping = relationship(
        'Grouping',
        primaryjoin='Party.party_id == Grouping.party_id',
        back_populates='party'
    )
 
    organization = relationship(
        'Organization',
        primaryjoin='Party.party_id == Organization.party_id',
        back_populates='party'
    )
 
    party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='Party.party_id = PartyRelationship.party_id',
        back_populates='party'
    )
 
    related_party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='Party.party_id = PartyRelationship.related_party_id',
        back_populates='related_party'
    )
 
    legal_jurisdiction_party_identity = relationship(
        'LegalJurisdictionPartyIdentity',
        primaryjoin='Party.party_id == LegalJurisdictionPartyIdentity.party_id',
        back_populates='party'
    )
 
    party_communication = relationship(
        'PartyCommunication',
        primaryjoin='Party.party_id == PartyCommunication.party_id',
        back_populates='party'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='Party.party_id == InsurableObjectPartyRole.party_id',
        back_populates='party'
    )
 
    party_preference = relationship(
        'PartyPreference',
        primaryjoin='Party.party_id == PartyPreference.party_id',
        back_populates='party'
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='Party.party_id == AgreementPartyRole.party_id',
        back_populates='party'
    )
 
    account_party_role = relationship(
        'AccountPartyRole',
        primaryjoin='Party.party_id == AccountPartyRole.party_id',
        back_populates='party'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='Party.party_id == ArbitrationPartyRole.party_id',
        back_populates='party'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='Party.party_id == LitigationPartyRole.party_id',
        back_populates='party'
    )
 
    assessment_party_role = relationship(
        'AssessmentPartyRole',
        primaryjoin='Party.party_id == AssessmentPartyRole.party_id',
        back_populates='party'
    )
 
    party_assessment = relationship(
        'PartyAssessment',
        primaryjoin='Party.party_id == PartyAssessment.party_id',
        back_populates='party'
    )
 
    def __repr__(self):
        return "<Party(" \
               "party_name='%s', " \
               "party_type_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_name,
                   self.party_type_code,
                   self.begin_date,
                   self.end_date
                )
 
 
class PartyRelationship(Base):
    __tablename__ = 'party_relationship'
 
    party_relationship_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    related_party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    relationship_type_code = Column(String)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    party = relationship(
        'Party',
        primaryjoin='PartyRelationship.party_id = Party.party_id',
        back_populates='party_relationship'
    )
 
    related_party = relationship(
        'Party',
        primaryjoin='PartyRelationship.related_party_id = Party.party_id',
        back_populates='related_party_relationship'
    )
 
    party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.party_id == PartyRelationshipRole.party_id ',
        back_populates='party_relationship'
    )
 
    related_party_relationship_role = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.related_party_id == PartyRelationshipRole.related_party_id',
        back_populates='related_party_relationship'
    )
 
    party_relationship_role_type_code = relationship(
        'PartyRelationshipRole',
        primaryjoin='PartyRelationship.relationship_type_code == PartyRelationshipRole.relationship_type_code',
        back_populates='party_relationship_type_code'
    )
 
    party_relationship_role_begin_date = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationship.begin_date == PartyRelationshipRole.relationship_begin_date',
        back_populates='party_relationship_begin_date'
    )
 
    def __repr__(self):
        return "<PartyRelationship(" \
               "party_id='%s', " \
               "relationship_type_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_id,
                   self.relationship_type_code,
                   self.begin_date,
                   self.end_date
                )
 
 
class PartyRelationshipRole(Base):
    __tablename__ = 'party_relationship_role'
 
    party_relationship_role_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party_relationship.party_id')
    )
 
    related_party_id = Column(
        Integer,
        ForeignKey('party_relationship.related_party_id')
    )
 
    relationship_type_code = Column(
        Integer,
        ForeignKey('party_relationship.relationship_type_code')
    )
 
    relationship_begin_date = Column(
        Date,
        ForeignKey('party_relationship.begin_date')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    role_begin_date = Column(Date)
 
    party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.party_id == PartyRelationship.party_id',
        back_populates='party_relationship_role'
    )
 
    related_party_relationship = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.related_party_id == PartyRelationship.related_party_id',
        back_populates='related_party_relationship_role'
    )
 
    party_relationship_type_code = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.relationship_type_code == PartyRelationship.relationship_type_code',
        back_populates='party_relationship_role_type_code'
    )
 
    party_relationship_begin_date = relationship(
        'PartyRelationship',
        primaryjoin='PartyRelationshipRole.relationship_begin_date == PartyRelationship.begin_date',
        back_populates='party_relationship_role_begin_date'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='PartyRelationshipRole.party_role_code == PartyRole.party_role_code',
        back_populates='party_relationship_role'
    )
 
    def __repr__(self):
        return "<PartyRelationshipRole(" \
               "party_id='%s', " \
               "related_party_id='%s', " \
               "relationship_type_code='%s', "\
               "relationship_begin_date='%s', " \
               "party_role_code='%s', " \
               "role_begin_date='%s', " \
               ")>" % (
                   self.party_id,
                   self.related_party_id,
                   self.relationship_type_code,
                   self.relationship_begin_date,
                   self.party_role_code,
                   self.role_begin_date
                )
 
 
class LegalJurisdictionPartyIdentity(Base):
    __tablename__ = 'legal_jurisdiction_party_identity'
 
    legal_jurisdiction_party_id = Column(
        Integer,
        primary_key=True
    )
 
    legal_jurisdiction_id = Column(
        Integer,
        ForeignKey('legal_jurisdiction.legal_jurisdiction_id')
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    legal_identity_type_code = Column(String)
    legal_classification_code = Column(String)
 
    party = relationship(
        'Party',
        primaryjoin='LegalJurisdictionPartyIdentity.party_id == Party.party_id',
        back_populates='legal_jurisdiction_party_identity'
    )
 
    legal_jurisdiction = relationship(
        'LegalJurisdiction',
        primaryjoin='LegalJurisdictionPartyIdentity.legal_jurisdiction_id == LegalJurisdiction.legal_jurisdiction_id',
        back_populates='legal_jurisdiction_party_identity'
    )
 
    def __repr__(self):
        return "<LegalJurisdictionPartyIdentity(" \
               "legal_jurisdiction_id='%s', " \
               "party_id='%s', " \
               "legal_identity_type_code='%s', "\
               "legal_classification_code='%s', " \
               ")>" % (
                   self.legal_jurisdiction_id,
                   self.party_id,
                   self.legal_identity_type_code,
                   self.legal_classification_code
                )
 
 
class LegalJurisdiction(Base):
    __tablename__ = 'legal_jurisdiction'
 
    legal_jurisdiction_id = Column(
        Integer,
        primary_key=True
    )
 
    legal_jurisdiction_name = Column(String)
    legal_jurisdiction_description = Column(String)
    rules_preference_description = Column(String)
 
    legal_jurisdiction_party_identity = relationship(
        'LegalJurisdictionPartyIdentity',
        primaryjoin='LegalJurisdiction.legal_jurisdiction_id == LegalJurisdictionPartyIdentity.legal_jurisdiction_id',
        back_populates='legal_jurisdiction'
    )
 
    def __repr__(self):
        return "<LegalJurisdiction(" \
               "legal_jurisdiction_name='%s', " \
               "legal_jurisdiction_description='%s', " \
               "rules_preference_description='%s', "\
               ")>" % (
                   self.legal_jurisdiction_name,
                   self.legal_jurisdiction_description,
                   self.rules_preference_description
                )
 
 
class PartyCommunication(Base):
    __tablename__ = 'party_communication'
 
    party_communication_id = Column(
        Integer,
        primary_key=True
    )
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    communication_id = Column(
        Integer,
        ForeignKey('communication_identity.communication_id')
    )
 
    party_locality_code = Column(Integer)
 
    begin_date = Column(Date)
 
    end_date = Column(Date)
 
    preference_sequence_number = Column(Integer)
 
    preference_day_and_time_group_code = Column(Integer)
 
    party_routing_description = Column(String)
 
    party = relationship(
        'Party',
        primaryjoin='PartyCommunication.party_id == Party.party_id',
        back_populates='party_communication'
    )
 
    communication = relationship(
        'CommunicationIdentity',
        primaryjoin='PartyCommunication.communication_id == CommunicationIdentity.communication_id',
        back_populates='party_communication'
    )
 
    def __repr__(self):
        return "<PartyCommunication(" \
               "party_id='%s', " \
               "communication_id='%s', " \
               "party_locality_code='%s', " \
               "begin_date='%s', " \
               "end_date='%s', "\
               "preference_sequence_number='%s', " \
               "preference_day_and_time_group_code='%s', " \
               "party_routing_description='%s', " \
               ")>" % (
                   self.party_id,
                   self.communication_id,
                   self.party_locality_code,
                   self.begin_date,
                   self.end_date,
                   self.preference_sequence_number,
                   self.preference_day_and_time_group_code,
                   self.party_routing_description
                )
 
 
class CommunicationIdentity(Base):
    __tablename__ = 'communication_identity'
 
    communication_id = Column(
        Integer,
        primary_key=True
    )
 
    communication_type_code = Column(String)
    communication_value = Column(String)
    communication_qualifier_value = Column(String)
 
    geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    party_communication = relationship(
        'PartyCommunication',
        primaryjoin='CommunicationIdentity.communication_id == PartyCommunication.communication_id',
        back_populates='communication'
    )
    geographic_location = relationship(
        'GeographicLocationIdentifier',
        primaryjoin='CommunicationIdentity.geographic_location_id == '
                    'GeographicLocationIdentifier.geographic_location_id',
        back_populates='communication_identity'
    )
 
    def __repr__(self):
        return "<CommunicationIdentity(" \
               "communication_type_code='%s', " \
               "communication_value='%s', " \
               "communication_qualifier_value='%s', " \
               "geographic_location_id='%s', " \
               ")>" % (
                   self.communication_type_code,
                   self.communication_value,
                   self.communication_qualifier_value,
                   self.geographic_location_id
                )
 
 
class GeographicLocation(Base):
    __tablename__ = 'geographic_location'
 
    geographic_location_id = Column(
        Integer,
        primary_key=True
    )
 
    geographic_location_type_code = Column(String)
 
    location_code = Column(String)
 
    location_name = Column(String)
 
    location_number = Column(String)
 
    state_code = Column(
        String,
        ForeignKey('state.state_code')
    )
 
    parent_geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    location_address_id = Column(
        Integer,
        ForeignKey('location_address.location_address_id')
    )
 
    physical_location_identifier = Column(
        Integer,
        ForeignKey('physical_location.physical_location_id')
    )
 
    geographic_location_parent = relationship(
        'GeographicLocation',
        primaryjoin='GeographicLocation.parent_geographic_location_id =='
                    ' GeographicLocation.geographic_location_id',
        back_populates='geographic_location_parent_u'
    )
 
    geographic_location_parent_u = relationship(
        'GeographicLocation',
        primaryjoin='GeographicLocation.geographic_location_id =='
                    ' GeographicLocation.parent_geographic_location_id',
        back_populates='geographic_location_parent'
    )
 
    communication_identity = relationship(
        'GeographicLocation',
        primaryjoin='CommunicationIdentity.geographic_location_id == '
                    'GeographicLocation.geographic_location_id',
        back_populates='geographic_location'
    )
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='GeographicLocation.geographic_location_id == InsurableObject.geographic_location_id',
        back_populates='geographic_location'
    )
 
    policy = relationship(
        'Policy',
        primaryjoin='GeographicLocation.geographic_location_id == Policy.geographic_location_id',
        back_populates='geographic_location'
    )
 
    policy_amount = relationship(
        'PolicyAmount',
        primaryjoin='GeographicLocation.geographic_location_id == PolicyAmount.geographic_location_id',
        back_populates='geographic_location'
    )
 
    location_address = relationship(
        'LocationAddress',
        primaryjoin='GeographicLocation.location_address_id == LocationAddress.location_address_id',
        back_populates='geographic_location'
    )
 
    physical_location = relationship(
        'PhysicalLocation',
        primaryjoin='GeographicLocation.physical_location_id == PhysicalLocation.physical_location_id',
        back_populates='geographic_location'
    )
 
    occurrence = relationship(
        'Occurrence',
        primaryjoin='GeographicLocation.geographic_location_id == Occurrence.geographic_location_id',
        back_populates='geographic_location'
    )
 
    rating_territory_geographic_location = relationship(
        'RatingTerritoryGeographicLocation',
        primaryjoin='GeographicLocation.geographic_location_id == '
                    'RatingTerritoryGeographicLocation.geographic_location_id',
        back_populates='geographic_location'
    )
 
    state = relationship(
        'State',
        primaryjoin='GeographicLocation.state_code == State.state_code',
        back_populates='geographic_location'
    )
 
    company_jurisdiction = relationship(
        'CompanyJurisdiction',
        primaryjoin='GeographicLocation.geographic_location_id == CompanyJurisdiction.geographic_location_id',
        back_populates='geographic_location'
    )
 
    def __repr__(self):
        return "<GeographicLocation(" \
               "geographic_location_type_code='%s', " \
               "location_code='%s', " \
               "location_name='%s', "\
               "location_number='%s', " \
               "state_code='%s', " \
               "parent_geographic_location_id='%s', " \
               "location_address_identifier='%s', " \
               "physical_location_identifier='%s', " \
               ")>" % (
                   self.geographic_location_type_code,
                   self.location_code,
                   self.location_name,
                   self.location_number,
                   self.state_code,
                   self.parent_geographic_location_id,
                   self.location_address_identifier,
                   self.physical_location_identifier
                )
 
 
class InsurableObject(Base):
    __tablename__ = 'insurable_object'
 
    insurable_object_id = Column(
        Integer,
        primary_key=True
    )
 
    insurable_object_type_code = Column(Integer)
 
    geographic_location_id = Column(
        Integer,
        ForeignKey('geographic_location.geographic_location_id')
    )
 
    geographic_location = relationship(
        'GeographicLocation',
        primaryjoin='InsurableObject.geographic_location_id == GeographicLocation.geographic_location_id',
        back_populates='insurable_object'
    )
 
    claim = relationship(
        'Claim',
        primaryjoin='InsurableObject.insurable_object_id == Claim.insurable_object_id',
        back_populates='insurable_object'
    )
 
    insurable_object_party_role = relationship(
        'InsurableObjectPartyRole',
        primaryjoin='InsurableObject.insurable_object_id == InsurableObjectPartyRole.insurable_object_id',
        back_populates='insurable_object'
    )
 
    policy_coverage_detail = relationship(
        'PolicyCoverageDetail',
        primaryjoin='InsurableObject.insurable_object_id == PolicyCoverageDetail.insurable_object_id',
        back_populates='insurable_object'
    )
 
    policy_amount = relationship(
        'PolicyAmount',
        primaryjoin='InsurableObject.insurable_object_id == PolicyAmount.insurable_object_id',
        back_populates='insurable_object'
    )
 
    object_assessment = relationship(
        'ObjectAssessment',
        primaryjoin='InsurableObject.insurable_object_id == ObjectAssessment.insurable_object_id',
        back_populates='insurable_object'
    )
 
    vehicle = relationship(
        'Vehicle',
        primaryjoin='InsurableObject.insurable_object_id == Vehicle.insurable_object_id',
        back_populates='insurable_object'
    )
 
    manufactured_object = relationship(
        'ManufacturedObject',
        primaryjoin='InsurableObject.insurable_object_id == ManufacturedObject.insurable_object_id',
        back_populates='insurable_object'
    )
 
    farm_equipment = relationship(
        'FarmEquipment',
        primaryjoin='InsurableObject.insurable_object_id == FarmEquipment.insurable_object_id',
        back_populates='insurable_object'
    )
 
    body_object = relationship(
        'BodyObject',
        primaryjoin='InsurableObject.insurable_object_id == BodyObject.insurable_object_id',
        back_populates='insurable_object'
    )
 
    workers_comp_class = relationship(
        'WorkersCompClass',
        primaryjoin='InsurableObject.insurable_object_id == WorkersCompClass.insurable_object_id',
        back_populates='insurable_object'
    )
 
    structure = relationship(
        'Structure',
        primaryjoin='InsurableObject.insurable_object_id == Structure.insurable_object_id',
        back_populates='insurable_object'
    )
 
    transportation_class = relationship(
        'TransportationClass',
        primaryjoin='InsurableObject.insurable_object_id == TransportationClass.insurable_object_id',
        back_populates='insurable_object'
    )
 
    def __repr__(self):
        return "<InsurableObject(" \
               "insurable_object_type_code='%s', " \
               "geographic_location_id='%s', " \
               ")>" % (
                   self.insurable_object_type_code,
                   self.geographic_location_id
                )
 
 
class Claim(Base):
    __tablename__ = 'claim'
 
    claim_id = Column(
        Integer,
        primary_key=True
    )
 
    occurrence_id = Column(
        Integer,
        ForeignKey('occurrence.occurrence_id')
    )
 
    catastrophe_id = Column(
        Integer,
        ForeignKey('catastrophe.catastrophe_id')
    )
 
    insurable_object_id = Column(
        Integer,
        ForeignKey('insurable_object.insurable_object_id')
    )
 
    company_claim_number = Column(Integer)
 
    company_subclaim_number = Column(Integer)
 
    claim_description = Column(String)
 
    claim_open_date = Column(Date)
 
    claim_close_date = Column(Date)
 
    claim_reopen_date = Column(Date)
 
    claim_status_code = Column(String)
 
    claim_reported_date = Column(Date)
 
    claims_made_date = Column(Date)
 
    entry_in_to_claims_made_program_date = Column(Date)
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='Claim.insurable_object_id == InsurableObject.insurable_object_id',
        back_populates='claim'
    )
 
    occurrence = relationship(
        'Occurrence',
        primaryjoin='Claim.occurrence_id == Occurrence.occurrence_id',
        back_populates='claim'
    )
 
    catastrophe = relationship(
        'Catastrophe',
        primaryjoin='Claim.catastrophe_id == Catastrophe.catastrophe_id',
        back_populates='claim'
    )
 
    claim_coverage = relationship(
        'ClaimCoverage',
        primaryjoin='Claim.claim_id == ClaimCoverage.claim_id',
        back_populates='claim'
    )
 
    claim_amount = relationship(
        'ClaimAmount',
        primaryjoin='Claim.claim_id == ClaimAmount.claim_id',
        back_populates='claim'
    )
 
    claim_folder = relationship(
        'ClaimFolder',
        primaryjoin='Claim.claim_id == ClaimFolder.claim_id',
        back_populates='claim'
    )
 
    arbitration_party_role = relationship(
        'ArbitrationPartyRole',
        primaryjoin='Claim.claim_id == ArbitrationPartyRole.claim_id',
        back_populates='claim'
    )
 
    claim_litigation = relationship(
        'ClaimLitigation',
        primaryjoin='Claim.claim_id == ClaimLitigation.claim_id',
        back_populates='claim'
    )
 
    claim_arbitration = relationship(
        'ClaimArbitration',
        primaryjoin='Claim.claim_id == ClaimArbitration.claim_id',
        back_populates='claim'
    )
 
    litigation_party_role = relationship(
        'LitigationPartyRole',
        primaryjoin='Claim.claim_id == LitigationPartyRole.claim_id',
        back_populates='claim'
    )
 
    claim_assessment = relationship(
        'ClaimAssessment',
        primaryjoin='Claim.claim_id == ClaimAssessment.claim_id',
        back_populates='claim'
    )
 
    def __repr__(self):
        return "<Claim(" \
               "occurrence_id='%s', " \
               "catastrophe_id='%s', " \
               "insurable_object_id='%s', "\
               "company_claim_number='%s', " \
               "company_subclaim_number='%s', " \
               "claim_description='%s', " \
               "claim_open_date='%s', " \
               "claim_close_date='%s', " \
               "claim_reopen_date='%s', " \
               "claim_status_code='%s', " \
               "claim_reported_date='%s', "\
               "claims_made_date='%s', "\
               "entry_in_to_claims_made_program_date='%s', "\
               ")>" % (
                   self.occurrence_id,
                   self.catastrophe_id,
                   self.insurable_object_id,
                   self.company_claim_number,
                   self.company_subclaim_number,
                   self.claim_description,
                   self.claim_open_date,
                   self.claim_close_date,
                   self.claim_reopen_date,
                   self.claim_status_code,
                   self.claim_reported_date,
                   self.claims_made_date,
                   self.entry_in_to_claims_made_program_date
                )
 
 
class InsurableObjectPartyRole(Base):
    __tablename__ = 'insurable_object_party_role'
 
    insurable_object_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    insurable_object_id = Column(
        Integer,
        ForeignKey('insurable_object.insurable_object_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    effective_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    expiration_date = Column(Date)
 
    insurable_object = relationship(
        'InsurableObject',
        primaryjoin='InsurableObjectPartyRole.insurable_object_id == InsurableObject.insurable_object_id',
        back_populates='insurable_object_party_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='InsurableObjectPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='insurable_object_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='InsurableObjectPartyRole.party_id == Party.party_id',
        back_populates='insurable_object_party_role'
    )
 
    def __repr__(self):
        return "<InsurableObjectPartyRole(" \
               "insurable_object_id='%s', " \
               "party_role_code='%s', " \
               "effective_date='%s', "\
               "party_id='%s', " \
               "expiration_date='%s', " \
               ")>" % (
                   self.insurable_object_id,
                   self.party_role_code,
                   self.effective_date,
                   self.party_id,
                   self.expiration_date
                )
 
 
class ClaimPartyRole(Base):
    __tablename__ = 'claim_party_role'
 
    claim_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    begin_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    end_date = Column(Date)
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='ClaimPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='claim_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='ClaimPartyRole.party_id == Party.party_id',
        back_populates='claim_party_role'
    )
 
    def __repr__(self):
        return "<ClaimPartyRole(" \
               "party_role_code='%s', " \
               "begin_date='%s', " \
               "party_id='%s', " \
               "end_date='%s', " \
               ")>" % (
                   self.party_role_code,
                   self.begin_date,
                   self.party_id,
                   self.end_date
                )
 
 
class PartyPreference(Base):
    __tablename__ = 'party_preference'
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id'),
        primary_key=True
    )
 
    preferred_language_code = Column(Integer)
 
    party = relationship(
        'Party',
        primaryjoin='PartyPreference.party_id == Party.party_id',
        back_populates='party_preference'
    )
 
    def __repr__(self):
        return "<PartyPreference(" \
               "preferred_language_code='%s', " \
               ")>" % (
                   self.preferred_language_code
                )
 
 
class Agreement(Base):
    __tablename__ = 'agreement'
 
    agreement_id = Column(
        Integer,
        primary_key=True
    )
 
    agreement_type_code = Column(Integer)
 
    agreement_name = Column(String)
 
    agreement_original_inception_date = Column(Date)
 
    product_id = Column(
        Integer,
        ForeignKey('product.product_id')
    )
 
    agreement_party_role = relationship(
        'AgreementPartyRole',
        primaryjoin='Agreement.agreement_id == AgreementPartyRole.agreement_id',
        back_populates='agreement'
    )
 
    account_agreement = relationship(
        'AccountAgreement',
        primaryjoin='Agreement.agreement_id == AccountAgreement.agreement_id',
        back_populates='agreement'
    )
 
    policy = relationship(
        'Policy',
        primaryjoin='Agreement.agreement_id == Policy.agreement_id',
        back_populates='agreement'
    )
 
    agency_contract = relationship(
        'AgencyContract',
        primaryjoin='agreement.agreement_id == AgencyContract.agreement_id',
        back_populates='agreement'
    )
 
    reinsurance_agreement = relationship(
        'ReinsuranceAgreement',
        primaryjoin='Agreement.agreement_id == ReinsuranceAgreement.agreement_id',
        back_populates='agreement'
    )
 
    commercial_agreement = relationship(
        'CommercialAgreement',
        primaryjoin='Agreement.agreement_id == CommercialAgreement.agreement_id',
        back_populates='agreement'
    )
 
    brokerage_contract = relationship(
        'BrokerageContract',
        primaryjoin='Agreement.agreement_id == BrokerageContract.agreement_id',
        back_populates='agreement'
    )
 
    financial_account_agreement = relationship(
        'FinancialAccountAgreement',
        primaryjoin='Agreement.agreement_id == FinancialAccountAgreement.agreement_id',
        back_populates='agreement'
    )
 
    derivative_contract = relationship(
        'DerivativeContract',
        primaryjoin='Agreement.agreement_id == DerivativeContract.agreement_id',
        back_populates='agreement'
    )
 
    intermediary_agreement = relationship(
        'IntermediaryAgreement',
        primaryjoin='Agreement.agreement_id == IntermediaryAgreement.agreement_id',
        back_populates='agreement'
    )
 
    group_agreement = relationship(
        'GroupAgreement',
        primaryjoin='Agreement.agreement_id == GroupAgreement.agreement_id',
        back_populates='agreement'
    )
 
    commutation_agreement = relationship(
        'CommutationAgreement',
        primaryjoin='Agreement.agreement_id == CommutationAgreement.agreement_id',
        back_populates='agreement'
    )
 
    provider_agreement = relationship(
        'ProviderAgreement',
        primaryjoin='Agreement.agreement_id == ProviderAgreement.agreement_id',
        back_populates='agreement'
    )
 
    individual_agreement = relationship(
        'IndividualAgreement',
        primaryjoin='Agreement.agreement_id == IndividualAgreement.agreement_id',
        back_populates='agreement'
    )
 
    auto_repair_shop_contract = relationship(
        'AutoRepairShopContract',
        primaryjoin='Agreement.agreement_id == AutoRepairShopContract.agreement_id',
        back_populates='agreement'
    )
 
    staffing_agreement = relationship(
        'StaffingAgreement',
        primaryjoin='Agreement.agreement_id == StaffingAgreement.agreement_id',
        back_populates='staffing_agreement'
    )
 
    product = relationship(
        'Product',
        primaryjoin='Agreement.product_id == Product.product_id',
        back_populates='agreement'
    )
 
    agreement_assessment = relationship(
        'AgreementAssessment',
        primaryjoin='Agreement.agreement_id == AgreementAssessment.agreement_id',
        back_populates='agreement'
    )
 
    def __repr__(self):
        return "<Agreement(" \
               "agreement_type_code='%s', " \
               "agreement_name='%s', " \
               "agreement_original_inception_date='%s', " \
               "product_identifier='%s', " \
               ")>" % (
                   self.agreement_type_code,
                   self.agreement_name,
                   self.agreement_original_inception_date,
                   self.product_identifier
                )
 
 
class AgreementPartyRole(Base):
    __tablename__ = 'agreement_party_role'
 
    agreement_party_role_id = Column(
        Integer,
        primary_key=True
    )
 
    agreement_id = Column(
        Integer,
        ForeignKey('agreement.agreement_id')
    )
 
    party_role_code = Column(
        String,
        ForeignKey('party_role.party_role_code')
    )
 
    effective_date = Column(Date)
 
    party_id = Column(
        Integer,
        ForeignKey('party.party_id')
    )
 
    expiration_date = Column(Date)
 
    agreement = relationship(
        'Agreement',
        primaryjoin='AgreementPartyRole.agreement_id == Agreement.agreement_id',
        back_populates='agreement_party_role'
    )
 
    party_role = relationship(
        'PartyRole',
        primaryjoin='AgreementPartyRole.party_role_code == PartyRole.party_role_code',
        back_populates='agreement_party_role'
    )
 
    party = relationship(
        'Party',
        primaryjoin='AgreementPartyRole.party_id == Party.party_id',
        back_populates='agreement_party_role'
    )
 
    def __repr__(self):
        return "<AgreementPartyRole(" \
               "agreement_id='%s', " \
               "party_role_code='%s', " \
               "effective_date='%s', " \
               "party_id='%s', " \
               "expiration_date='%s', " \
               ")>" % (
                   self.agreement_id,
                   self.party_role_code,
                   self.effective_date,
                   self.party_id,
                   self.expiration_date
                )

I have taken a few liberties in my own implementation, such as creating surrogate keys whenever I came across a composite identifier, which should make joining easier. I’ve also chosen my own data types for ambiguous fields (such as integers for identifiers and strings for descriptions) based on my own interpretation, and chose to represent superclass/subclass relationships by making one table for each superclass and subclass, which can be joined with primary/foreign key relationships.

Installation and Deployment

To use PCDM, you need to install SQLAlchemy if you don’t already have it:

Shell
1
pip3 install sqlalchemy

You can install and deploy PCDM by cloning the repo from my GitHub. The deployment script is displayed below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import sqlalchemy as sa
 
from sqlalchemy.orm import sessionmaker
 
from pcdm.base import Base
 
from pcdm import (
    party,
    account,
    policy,
    claim,
    assessment,
    agreementrole,
    claimrole,
    staffing,
    partyst,
    insurable,
    money,
    event,
    product)
 
engine = sa.create_engine(
            'sqlite:///pcdm.db',
            echo=True
        )
session = sessionmaker(bind=engine)
Base.metadata.create_all(engine)

You can either run this script, or use the terminal to clone and then deploy:

Shell
1
2
3
git clone https://github.com/genedan/PCDM
cd PCDM
python3 deploy_sqlite.py

If the deployment succeeds, you should see a SQLite database appear with 256 tables in it:

Although SQLite is the default, you can use this repo to make your own deployments for other RDBMSs (Postgres, SQL Sever, etc.). I have not made these ports yet, but I’m assumming if you have read this far, you’re a technically savvy person who can help me out by writing your own.

Documentation

I am working on making my own documentation, which is not yet available. But for now you can refer to the official OMG PCDM document.

Bugs

Warning – this repo is open source, and hence contains no warranty and may contain bugs. You can help contribute to the effort by making an issue or pull request should you encounter a bug.

Posted in: Actuarial / Tagged: database, insurance, object management group, PCDM, property casualty data model

No. 141: MIES – Premium and Claim Transactions

5 July, 2020 10:28 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

Up until now, I’ve been able to demonstrate basic consumer behavior and certain market phenomena seen in the insurance industry. However, there’s been a major problem with MIES in that no money has actually changed hands in any of the simulations we’ve seen so far. Consumers have simply switched carriers depending on price, which allowed me to demonstrate adverse selection, but not much else. Consumption decisions involving insurance depend on wealth, but since there was no way to calculate wealth in MIES, its ability to model these decisions was limited.

The next view chapters in Varian place a heavy emphasis on wealth and risk tolerance, so this week, I made the decision to work on incorporating transactions before diving deeper into consumer behavior.

At first glance, transactions might seem like a simple thing to implement, after all, why not just keep a running cash balance for each entity, and then add and subtract payments as needed? The problem with this method is the same problem that leads companies to use double-entry accounting. Transactions are more complicated than simply sending money from one place to another. Loans are generated and capital is invested, which creates liabilities that must be considered when trying to calculate the wealth of an entity. Even something as simple as a premium payment is effectively a loan to an insurance company that needs to have a liability recorded (the unearned premium reserve), in addition to an increase in cash to the insurer.

Therefore, I’ve had to draw on my basic knowledge of accounting, which made me uneasy since I’m not an accountant myself. However, in order to get MIES to model the phenomena I want to model, and to answer the questions I have about insurance, I need to implement double-entry accounting, and eventually, statutory accounting rules. I ran across a post on Hacker News titled, ‘It’s OK for your open source library to be a bit shitty,’ which encouraged me to keep moving forward with the project despite the amount of discomfort I have.

I have certainly found many errors in MIES from past versions and there will likely be many more, including in this post. However, there’s not a lot of open source actuarial stuff out there, or in particular, open source actuarial simulations incorporating both economics concepts and double-entry accounting. Or, if there are packages out there, they aren’t easy to find. Thus, I’ve taken the step to put something out there, awaiting any feedback for things that need to fixed, and then making improvements. If this ever proves to be something useful, younger generations will create even better tools in the future.

The Bank Class

Banks facilitate transactions between insurers, brokers, customers, and other banks. While it may eventually be possible to define more than one bank per simulation, all the examples in the near future will have a single bank at which entities can deposit money and send payments to each other.

Schema

As with all the other entities, each bank comes with its own database:

Here, a bank can accept three types of customers. The customer table represents the customer superclass and references the person, insurer, and bank subclasses. Each customer can have an optional number of accounts. Any of these customers can send transactions to any other customer, including themself. Notice that the transaction table has two relationships to the account table, since the debit and credit account fields for each transaction both point to the account table.

The SQLAlchemy mapping is defined below:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, Date, Float, String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
 
 
Base = declarative_base()
 
 
class Account(Base):
    __tablename__ = 'account'
 
    account_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    account_type = Column(String)
 
    transaction_debit = relationship(
        'Transaction',
        primaryjoin='Transaction.debit_account == Account.account_id',
        back_populates='account_debit'
    )
 
    transaction_credit = relationship(
        'Transaction',
        primaryjoin='Transaction.credit_account == Account.account_id',
        back_populates='account_credit'
    )
 
    def __repr__(self):
        return "<Account(" \
               "customer_id='%s', " \
               "account_type='%s', " \
               ")>" % (
                   self.customer_id,
                   self.account_type
               )
 
 
class Transaction(Base):
    __tablename__ = 'transaction'
 
    transaction_id = Column(
        Integer,
        primary_key=True
    )
 
    debit_account = Column(
        Integer,
        ForeignKey('account.account_id')
    )
 
    credit_account = Column(
        Integer,
        ForeignKey('account.account_id')
    )
 
    transaction_date = Column(Date)
 
    transaction_amount = Column(Float)
 
    account_debit = relationship(
        "Account",
        primaryjoin='Transaction.debit_account == Account.account_id',
        back_populates='transaction_debit'
    )
 
    account_credit = relationship(
        "Account",
        primaryjoin='Transaction.credit_account == Account.account_id',
        back_populates='transaction_credit'
    )
 
    def __repr__(self):
        return "<Transaction(" \
               "debit_account='%s', " \
               "credit_account='%s', " \
               "transaction_date='%s', " \
               "transaction_amount='%s'" \
               ")>" % (
                   self.debit_account,
                   self.credit_account,
                   self.transaction_date,
                   self.transaction_amount,
               )
 
 
class Customer(Base):
    __tablename__ = 'customer'
 
    customer_id = Column(
        Integer,
        primary_key=True
    )
    customer_type = Column(String)
 
    person = relationship(
        'Person',
        primaryjoin='Customer.customer_id == Person.customer_id',
        back_populates='customer'
    )
 
    insurer = relationship(
        'Insurer',
        primaryjoin='Customer.customer_id == Insurer.customer_id',
        back_populates='customer'
    )
 
    bank = relationship(
        'Bank',
        primaryjoin='Customer.customer_id == Bank.customer_id',
        back_populates='customer'
    )
 
 
class Person(Base):
    __tablename__ = 'person'
 
    person_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Person.customer_id == Customer.customer_id',
        back_populates='person',
        uselist=True
    )
 
 
class Insurer(Base):
    __tablename__ = 'insurer'
 
    insurer_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Insurer.customer_id == Customer.customer_id',
        back_populates='insurer',
        uselist=True
    )
 
 
class Bank(Base):
    __tablename__ = 'bank'
 
    bank_id = Column(
        Integer,
        primary_key=True
    )
 
    customer_id = Column(
        Integer,
        ForeignKey('customer.customer_id')
    )
 
    customer = relationship(
        'Customer',
        primaryjoin='Bank.customer_id == Customer.customer_id',
        back_populates='bank',
        uselist=True
    )

Bank Methods

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import datetime as dt
import os
import pandas as pd
import sqlalchemy as sa
from sqlalchemy.orm import sessionmaker
 
import mies.schema.bank as bank
from mies.schema.bank import Account, Customer, Insurer, Person, Transaction
from mies.schema.bank import Bank as BankTable
from mies.utilities.connections import connect_universe
from mies.utilities.queries import query_bank_id
 
 
class Bank:
    def __init__(self, starting_capital, bank_name, path='db/banks/', date_established=dt.datetime(1, 12, 31)):
        if not os.path.exists(path):
            os.makedirs(path)
        self.engine = sa.create_engine(
            'sqlite:///' + path + bank_name + '.db',
            echo=True
        )
        session = sessionmaker(bind=self.engine)
        bank.Base.metadata.create_all(self.engine)
        self.session = session()
        self.connection = self.engine.connect()
        self.name = bank_name
        self.date_established = date_established
        self.id = self.__register()
        self.get_customers(self.id, 'bank')
        self.cash_account = self.assign_account(
            customer_id=self.id,
            account_type='cash'
        )
        self.capital_account = self.assign_account(self.id, 'capital')
        self.liability_account = self.assign_account(self.id, 'liability')
        self.make_transaction(
            self.cash_account,
            self.capital_account,
            self.date_established,
            starting_capital
        )
 
    def __register(self):
        # populate universe company record
        insurer_table = pd.DataFrame([[self.name]], columns=['bank_name'])
        session, connection = connect_universe()
        insurer_table.to_sql(
            'bank',
            connection,
            index=False,
            if_exists='append'
        )
        bank_id = query_bank_id(self.name)
        return bank_id
 
    def get_customers(self, ids, customer_type):
        new_customers = pd.DataFrame()
        new_customers[customer_type + '_id'] = pd.Series(ids)
        new_customers['customer_type'] = customer_type
 
        objects = []
        for index, row in new_customers.iterrows():
            if customer_type == 'person':
                customer_type_table = Person(person_id=row[customer_type + '_id'])
            elif customer_type == 'insurer':
                customer_type_table = Insurer(insurer_id=row[customer_type + '_id'])
            else:
                customer_type_table = BankTable(bank_id=row[customer_type + '_id'])
 
            customer = Customer(
                customer_type=customer_type
            )
            customer_type_table.customer.append(customer)
            objects.append(customer_type_table)
 
        self.session.add_all(objects)
        self.session.commit()
 
    def assign_accounts(self, customer_ids, account_type):
        """
        assign multiple accounts given customer ids
        """
        new_accounts = pd.DataFrame()
        new_accounts['customer_id'] = customer_ids
        new_accounts['account_type'] = account_type
 
        new_accounts.to_sql(
            'account',
            self.connection,
            index=False,
            if_exists='append'
        )
 
    def assign_account(self, customer_id, account_type):
        """
        assign a single account for a customer
        """
        account = Account(customer_id=int(customer_id), account_type=account_type)
        self.session.add(account)
        self.session.commit()
        return account.account_id
 
    def make_transaction(self, debit_account, credit_account, transaction_date, transaction_amount):
        """
        make a single transaction
        """
        transaction = Transaction(
            debit_account=int(debit_account),
            credit_account=int(credit_account),
            transaction_date=transaction_date,
            transaction_amount=transaction_amount
        )
        self.session.add(transaction)
        self.session.commit()
        return transaction.transaction_id
 
    def make_transactions(self, data: pd.DataFrame):
        """
        accepts a DataFrame to make multiple transactions
        need debit, credit, transaction date, transaction amount
        """
        data['debit_account'] = data['debit_account'].astype(int)
        data['credit_account'] = data['credit_account'].astype(int)
        data.to_sql(
            'transaction',
            self.connection,
            index=False,
            if_exists='append'
        )

Upon initialization, a bank will register itself as a customer, this allows it to have its own accounts, as well as to accept deposits from other customers. The reason why it needs to have its own accounts is because each transaction will need to have corresponding debit and credit accounts, and transactions between a bank and its customers will sometimes have one of the bank’s own accounts involved.

The method bank.get_customers() takes a list of IDs, which can be either those of people, insurers, or banks. For each of these entity IDs, the bank will create its own identifier for the customer, which can differ between that customer’s underlying ID. For example, a person with a person ID of 1, and an insurer with an insurer ID of 1, will have separate customer ids.

The method bank.assign_accounts() takes a list of customer IDs, a type of account (such as cash), and then creates that type of account for each customer.

The method bank.make_transactions() will take a list of transactions, each of which have a debit account, credit account, transaction date, and transaction volume defined, and then store them in the transactions table.

Now that we have our bank defined, I’ll walk through the insurance underwriting/claim cycle and show how the transactions that are currently available in MIES work. First, we’ll import the necessary modules, create an environment, make a population of 1000 people, and then create a bank called ‘blargo’ that has 4B in starting capital:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import datetime as dt
 
from mies.entities.bank import Bank
from mies.entities.broker import Broker
from mies.entities.god import God
from mies.entities.insurer import Insurer
from mies.utilities.queries import query_population
from utilities.queries import query_customers_by_person_id
 
ahura = God()
ahura.make_population(1000)
 
blargo = Bank(4000000, 'blargo')

Starting Wealth

Before we can issue policies to customers, we need to have a starting amount of wealth for each person so that they can actually pay for their policies. Furthermore, we also need each person to have a bank account from which they can issue payments to their insurers. To take care of these two steps, we’ll first send the person IDs to the bank, which will then create corresponding customer IDs and then establish one cash account for each customer:

Python
1
2
3
blargo.get_customers(ids=ids, customer_type='person')
customer_ids = query_customers_by_person_id(ids, 'blargo')
blargo.assign_accounts(customer_ids=customer_ids, account_type='cash')

This action populates two tables. The person table contains a record of all 1000 people, and the customer table has 1001 records, since each person becomes a customer, but the bank itself is already its own customer:

In the next step, we’ll use a new method called grant_wealth() which the environment uses to give each person a starting amount of wealth. Since wealth is not evenly distributed in society, I’ve drawn these values from the Pareto distribution:

1
ahura.grant_wealth(person_ids=ids, bank=blargo, transaction_date=pricing_date)

The method is defined as follows:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class God:
...
    def grant_wealth(
            self,
            person_ids,
            bank: Bank,
            transaction_date
    ):
        """
        assign an initial amount of starting wealth per person
        """
        accounts = query_accounts_by_person_id(
            person_ids,
            bank.name,
            'cash'
        )
        accounts['transaction_amount'] = pareto.rvs(
            b=1,
            scale=pm.person_params['income'],
            size=accounts.shape[0],
        )
        accounts = accounts[[
            'account_id',
            'transaction_amount'
        ]]
        accounts = accounts.rename(columns={
            'account_id': 'debit_account'
        })
        accounts['credit_account'] = bank.liability_account
        accounts['transaction_date'] = transaction_date
        bank.make_transactions(accounts)
...

This action deposits wealth in each person’s cash account. This is marked as the debit side of the transaction, the credit side is the liability that the bank takes on by accepting the deposits, since deposits are loans to the bank:

Policy Inception

Before we issue policies, we need to create two more entities in the simulation. One, a broker called ‘rayon’ and an insurer called ‘company_1.’ Initializing a company now requires two new arguments, a bank with which it associates, and its inception date. These new arguments are used to create bank accounts for the insurer:

Python
1
2
3
4
5
6
7
8
9
rayon = Broker()
 
company_1 = Insurer(4000000, blargo, pricing_date, 'company_1')
 
company_1_formula = 'incurred_loss ~ ' \
                    'age_class + ' \
                    'profession + ' \
                    'health_status + ' \
                    'education_level'

We’ll now use the broker rayon to place the customers with the insurer. This method also has a bank as a new argument, which will be used to facilitate the transactions:

Python
1
2
3
4
5
rayon.place_business(
        pricing_date,
        blargo,
        company_1
    )

This action creates a policy record for each insurer, which I won’t show here since I’ve already done so in a previous post. What has changed however, is that each person needs to pay the premium to the insurer up front. The broker is able to tell the bank to create a transaction for each premium payment. This time, the debit account is the insurer’s cash account, and the credit account is the person’s cash account. In the picture below, we see that there are 1000 additional transactions starting with transaction_id 1003 (1002 was used to seed insurer capital). The debit account on all these transactions is account ID 1004, which is the insurer’s cash account:

In reality, a corresponding liability should also be created in the insurer’s accounting system. This is called the unearned premium reserve which is what the insured is entitled to recieve if their policy gets canceled. This feature is not yet implemented in MIES, but it’s an important liability to consider in insurance.

Loss Occurrence

Now that we have our policies issued, we’re ready to simulate some losses:

Python
1
2
3
event_date = pricing_date + dt.timedelta(days=1)
 
ahura.smite(event_date)

This action produced 57 loss events, which can be found in the events table in the universe database:

Claim Reporting

These losses are not considered claims until they are reported to the insurer. Otherwise, the insurer has no knowledge that they occurred:

Python
1
rayon.report_claims(event_date)

This method has changed from last week. The loss amounts are now reported as case reserves, which are estimates made by an insurer on how much they will need to pay for the claim. This is now distinguished from paid losses, which are the actual payments the insurer makes to the insured:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Broker:
...
    def report_claims(self, report_date):
        # match events to policies in which they are covered
 
        events = query_events_by_report_date(report_date)
 
        policies = query_all_policies()
 
        claims = events.merge(
            policies,
            on='person_id',
            how='left'
        )
        claims = claims.query(
            'event_date >= effective_date '
            'and event_date <= expiration_date'
        )
 
        claims = claims.drop([
            'effective_date',
            'expiration_date',
            'premium',
            'company_id'
        ], axis=1)
 
        companies = get_company_names()
 
        for company in companies:
 
            # register claims by id
 
            reported_claims = claims[claims['company_name'] == company]
 
            reported_claims = reported_claims.rename(columns={
                'event_date': 'occurrence_date'
            })
 
            reported_claims = reported_claims.drop(['company_name'], axis=1)
 
            session, connection = connect_company(company)
 
            objects = []
            for index, row in reported_claims.iterrows():
                claim = Claim(
                    policy_id=row['policy_id'],
                    person_id=row['person_id'],
                    event_id=row['event_id'],
                    occurrence_date=row['occurrence_date'],
                    report_date=row['report_date']
                )
                open_claim = ClaimTransaction(
                    transaction_date=row['report_date'],
                    transaction_type='open claim',
                    transaction_amount=0
                )
                case_reserve = ClaimTransaction(
                    transaction_date=row['report_date'],
                    transaction_type='set case reserve',
                    transaction_amount=row['ground_up_loss']
                )
                claim.claim_transaction.append(open_claim)
                claim.claim_transaction.append(case_reserve)
                objects.append(claim)
 
            session.add_all(objects)
            session.commit()
 
            connection.close()

This action creates two transactions for each claim. One transaction, called ‘open claim’ signals that a claim has been created. Another transaction, called ‘set case reserve,’ sets a case reserve for each claim. Since there are 57 losses, there are 57 claims, and 114 transactions:

Notice that we have some fairly restrictive assumptions for the simulation. The case reserves are equal to the ground up losses, and all 57 losses are reported to and known by the insurer immediately. This is not the case in the real world, where an insurer does not know how much claims will cost until they are settled, and may not know about claims until many years after they have occurred. We’ll need to revisit this problem in the future, since estimating claim amounts, including those on unreported claims, is a core function of actuarial science.

Claim Settlement

Let’s close these claims by issuing payments:

Python
1
company_1.pay_claims(event_date + dt.timedelta(days=1))

Insurer.pay_claims() is a new method used to send checks to the insureds for indemnification:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def pay_claims(self, transaction_date):
        # send checks to bank
        case_reserves = query_open_case_reserves(self.company_name)
 
        accounts_to_pay = query_accounts_by_person_id(
            case_reserves['person_id'],
            self.bank.name, 'cash'
        )
 
        case_reserves = case_reserves.merge(
            accounts_to_pay,
            on='person_id',
            how='left'
        )
 
        case_reserves['transaction_date'] = transaction_date
 
        case_reserves = case_reserves.rename(columns={
            'case reserve': 'transaction_amount',
            'account_id': 'debit_account'
        })
 
        case_reserves['credit_account'] = self.cash_account
 
        payments = case_reserves[[
            'debit_account',
            'credit_account',
            'transaction_date',
            'transaction_amount']].copy()
 
        self.bank.make_transactions(payments)
 
        # people then use checks to pay their for their own losses
 
        payments['credit_account'] = payments['debit_account']
        payments['debit_account'] = self.bank.liability_account
 
        self.bank.make_transactions(payments)
 
 
        # reduce case reserves
 
        objects = []
 
        for index, row in case_reserves.iterrows():
            reserve_takedown = ClaimTransaction(
                claim_id = row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='reduce case reserve',
                transaction_amount=row['transaction_amount']
            )
            claim_payment = ClaimTransaction(
                claim_id=row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='claim payment',
                transaction_amount=row['transaction_amount']
            )
            close_claim = ClaimTransaction(
                claim_id=row['claim_id'],
                transaction_date=row['transaction_date'],
                transaction_type='close claim',
                transaction_amount=0
            )
            objects.append(reserve_takedown)
            objects.append(claim_payment)
            objects.append(close_claim)
 
        self.session.add_all(objects)
        self.session.commit()

There’s a lot going on here, so I’ll break it down. The payments to the insureds are handled first. We can see this by going to the transactions table in the bank database:

Notice that there are 114 additional transactions, two for each of the 57 claims. One transaction sends a payment from the insurer to the customer. You can see this since the debit account is the cash account of the customer, and the credit accont (1004) is the cash account of the insurer. The other transaction is a payment from the insured to whomever they owe money to due to the loss. The debit side of the transaction is now a reduction in the bank’s liability account, and the credit amount is a reduction in cash equal to the claim amount for the insured:

Next, three transactions are entered for each claim into the insurer’s database:

  1. Reduce case reserve
  2. Claim payment
  3. Close claim

‘Reduce case reserve’ is a reduction in the claims reserve to zero, signifying that the insurer no longer owes money to the insured. The ‘claim payment’ is a corresponding transaction representing the actual payment, and ‘close claim’ is a transaction that indicates that the claim is now closed. The insurer now has 5 claims transactions for each claim, 57 x 5 = 285 transactions in total. These five transactions are: 1) open claim, 2) set case reserve, 3) reduce case reserve 4) claim payment, and 5) close claim.

One source of confusion I had is that this way of recording transactions does not have the double-entry accounting that you’d see in a general ledger. Indeed, this form is more common for actuarial pricing modelers who do not usually need to get into the finer details of debits and credits. However, I’m leaning towards changing the claims transaction tables to also be double-entry, since doing so also makes things easier to program and avoids questions with negative values. For example, I had to think about whether to record case reserve reductions as a positive or negative value. This confusion is not present if I record them as credit and debit amounts.

Consumer Income

Each person now gets a paycheck during each period. This can be issued by the environment class:

Python
1
ahura.send_paychecks(person_ids=ids, bank=blargo, transaction_date=event_date + dt.timedelta(days=1))

There’s nothing too special about this method, it just debits each person’s cash account by their income amount:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class God:
...
    def send_paychecks(self, person_ids, bank: Bank, transaction_date):
        incomes = query_incomes(person_ids)
        incomes.columns = ['person_id', 'transaction_amount']
 
        accounts = query_accounts_by_person_id(
            person_ids,
            bank.name,
            'cash'
        )
 
        accounts = accounts.merge(incomes, on='person_id', how='left')
 
        accounts = accounts.rename(columns={
            'account_id': 'debit_account'
        })
        accounts['credit_account'] = bank.liability_account
        accounts['transaction_date'] = transaction_date
        accounts = accounts.drop([
            'person_id',
            'customer_id'
        ], axis=1)
        bank.make_transactions(accounts)

An additional 1000 transactions have been recorded, one for each customer. As with wealth, the debit side of the transaction is the person’s cash account, with a corresponding credit to the bank’s liability account:

Policy Pricing

Now that the claims have been reported and settled, the insurer can use this information to recalibrate the premium for each customer. However, unlike last week, claim amounts are not stored as a single column called ‘incurred_loss’, but now must be calculated from the transaction amounts. To handle this, I created a set of queries that can be used to return the case reserves, paid losses, and incurred amounts for each claim:

Python
1
2
3
4
from utilities.queries import query_case_by_claim
from utilities.queries import query_paid_by_claim
from utilities.queries import query_incurred_by_claim
from utilities.queries import query_pricing_model_data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def query_case_by_claim(company_name):
    session, connection = connect_company(company_name)
 
    claim_policy = session.query(
        Claim.claim_id,
        Claim.policy_id
    ).subquery()
 
    case_set = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('set')
    ).filter(ClaimTransaction.transaction_type == 'set case reserve').group_by(ClaimTransaction.claim_id).subquery()
 
    case_takedown = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('takedown')
    ).filter(ClaimTransaction.transaction_type == 'reduce case reserve').group_by(ClaimTransaction.claim_id).subquery()
 
    case_query = session.query(
        case_set.c.claim_id,
        (func.ifnull(case_set.c.set, 0) - func.ifnull(case_takedown.c.takedown, 0)).label('case_reserve')
    ).outerjoin(case_takedown, case_set.c.claim_id == case_takedown.c.claim_id).subquery()
 
    claim_case = session.query(
        claim_policy.c.claim_id,
        claim_policy.c.policy_id,
        func.ifnull(case_query.c.case_reserve, 0).label('case_reserve')
    ).outerjoin(case_query, claim_policy.c.claim_id == case_query.c.claim_id).statement
 
    case_reserve = pd.read_sql(claim_case, connection)
 
    connection.close()
 
    return case_reserve
 
 
def query_paid_by_claim(company_name):
    session, connection = connect_company(company_name)
 
    claim_policy = session.query(
        Claim.claim_id,
        Claim.policy_id
    ).subquery()
 
    payment_query = session.query(
        ClaimTransaction.claim_id,
        func.sum(ClaimTransaction.transaction_amount).label('paid_loss')
    ).filter(ClaimTransaction.transaction_type == 'claim payment').group_by(ClaimTransaction.claim_id).subquery()
 
    claim_paid = session.query(
        claim_policy.c.claim_id,
        claim_policy.c.policy_id,
        func.ifnull(payment_query.c.paid_loss, 0).label('paid_loss')
    ).outerjoin(payment_query, claim_policy.c.claim_id == payment_query.c.claim_id).statement
 
    claim_payments = pd.read_sql(claim_paid, connection)
 
    connection.close()
 
    return claim_payments
 
 
def query_incurred_by_claim(company_name):
 
    case = query_case_by_claim(company_name)
    case = case.drop(columns=['policy_id'], axis=1)
 
    paid = query_paid_by_claim(company_name)
 
    incurred = paid.merge(case, on='claim_id', how='left')
 
    incurred['incurred_loss'] = incurred['paid_loss'] + incurred['case_reserve']
 
    return incurred
 
def query_pricing_model_data(company_name):
    session, connection = connect_company(company_name)
 
    policy_query = session.query(
        Policy.policy_id,
        Policy.person_id,
        Customer.age_class,
        Customer.profession,
        Customer.health_status,
        Customer.education_level,
        ).outerjoin(
            Customer,
            Policy.person_id == Customer.person_id
        ).statement
 
    policy = pd.read_sql(policy_query, connection)
 
    claim = query_incurred_by_claim(company_name)
 
    claim = claim.drop(columns=['claim_id', 'paid_loss', 'case_reserve'], axis=1)
 
    claim = claim.groupby(['policy_id'])['incurred_loss'].agg('sum')
 
    model_set = policy.merge(claim, on='policy_id', how='left')
 
    model_set['incurred_loss'] = model_set['incurred_loss'].fillna(0)
 
    return model_set

We mostly need to be concerned about the last one of these, query_pricing_model_data() which uses the first three to combine policy and claim information together, which can be priced with a GLM:

Python
1
query_pricing_model_data('company_1')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Out[15]:
     policy_id  person_id age_class profession health_status education_level  \
0            1          1         E          A             P               H  
1            2          2         E          B             F               P  
2            3          3         Y          C             F               H  
3            4          4         M          C             F               H  
4            5          5         M          A             P               P  
..         ...        ...       ...        ...           ...             ...  
995        996        996         M          B             P               H  
996        997        997         E          A             P               H  
997        998        998         E          B             G               H  
998        999        999         M          A             G               P  
999       1000       1000         M          C             G               H  
     incurred_loss  
0              0.0  
1              0.0  
2              0.0  
3              0.0  
4              0.0  
..             ...  
995            0.0  
996            0.0  
997            0.0  
998            0.0  
999            0.0  
[1000 rows x 7 columns]

Since most people don’t have a claim, most incurred loss amounts are zero. This data set can then be used by the insurer to reprice with a GLM, and the new pricing algorithm is used by the broker to quote and place business:

1
2
3
4
5
6
7
company_1.price_book(company_1_formula)
 
rayon.place_business(
        pricing_date,
        blargo,
        company_1
    )

Further Improvements

Now that I’ve got transactions modeled, I can calculate the wealth for each entity in the simulation. This is key piece required to make further changes to the way consumer preferences work in MIES, which will soon incorporate risk tolerance and wealth.

Posted in: Actuarial, Mathematics, MIES

No. 140: MIES – Rate Changes – Slutsky and Hicks Decomposition

28 June, 2020 6:24 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

Last week, I revisited the MIES backend to split what was a single database into multiple databases – one per entity in the simulation. This enhances the level of realism and should make it easier to program transactions between the entities. This week, I’ll revisit consumer behavior by implementing the Slutsky and Hicks decomposition methods for analyzing price changes.

In the context of insurance, consumers frequently experience changes in price, typically during renewals when insurers apply updated rating algorithms against new information known about the insureds. For example, If you’ve made a claim or two during your policy period, and miss a rent payment, causing your credit score to go down, your premium is likely to increase upon renewal. This is because past claims and credit are frequently used as the underlying variables in a rating algorithm.

What happens when consumers face an increase in rates? Oftentimes, they reduce coverage, may try to shop around, or may do nothing at all and simply pay the new price. Today’s post discusses the first phenomenon, whereby an increase in rates causes a reduction in the amount of insurance that a consumer purchases. We can use the Slutsky and Hicks decomposition methods to break down this behavior into two components:

  1. The substitution effect
  2. The income effect

The substitution effect concerns the change in relative prices between two goods. Here, when a consumer faces a premium increase, the price of insurance increases relative to the price of all other goods, altering the rate at which the consumer would be willing to exchange a unit of insurance for a unit of all other goods.

The income effect concerns the change in the price of a good relative to consumer income. When a consumer faces a premium increase without a corresponding increase in income, their income affords them fewer units of insurance.

The content of this post roughly follows the content of chapter 8 in Varian. As usual, I focus on how this applies to my own project and will skip over much of the theoretical derivations that can be found in the text.

Slutsky Identity

The Slutsky identity has the following form:

    \[\frac{\Delta x_1}{\Delta p_1} = \frac{\Delta x_1^s}{\Delta p_1} - \frac{\Delta x_1^m}{\Delta m}x_1\]

Where the x_1 represents the quantity of good 1 (in this case insurance), p_1 represents the price of insurance (that is, the premium) and m represents the consumer’s income. The deltas are used to describe how the quantity of insurance purchased changes with premium, expressed on the left side of the identity. The first term after the equals sign represents the substitution effect, and the second term after the equals sign represents the income effect.

The Slutsky identity can also be expressed in terms of units instead of rates of change (\Delta x_1^m = -\Delta x_1^n):

    \[\Delta x_1 = \Delta x_1^s + \Delta x_1^n\]

While MIES can handle both forms, we’ll focus on the first form for the rest of the chapter.

Substitution Effect

Let’s examine the substitution effect. First, we’ll conduct all the steps manually, and then I’ll show how they are integrated into MIES. If we have some data already stored in a past simulation, we can extract a person from it:

Python
1
2
my_person = Person(1)
my_person.data

1
2
3
4
5
Out[12]:
   person_id age_class profession health_status education_level        income  \
0          1         E          B             F               U  89023.365436  
          wealth  cobb_c  cobb_d  
0  225300.272033     0.1     0.9  

Here, we have a person who makes 89k per year, with Cobb Douglas parameters c = 0.1 and d = 0.9. This means this person will spend 10% of their income on premium. For the sake of making the graphs in this post less cluttered and easier to read, let’s change c = d = .5 so the person spends 50% of their income on insurance:

Python
1
2
3
4
5
6
my_person.utility.c = .5
my_person.utility.d = .5
my_person.get_budget()
my_person.get_consumption()
my_person.get_consumption_figure()
my_person.show_consumption()

From the above figure, we can see that the person consumes about 45k worth of insurance. That’s about 11 units of exposure at a 4k premium per exposure, which is unrealistic in real life, but makes life easy for me because I haven’t bothered to update the margins of my website to accommodate wider figures. We’ll denote this bundle as ‘Old Bundle’ because we’ll compare it to the new consumption bundle after a rate change (note – if you are trying to replicate this in MIES, your figures may look a bit different, in reality I manually adjust the style of the plots so they can fit on my blog).

Now, let’s suppose the person faces a 100% increase in their rate so that their premium is 8k per unit of exposure, and construct a budget to reflect this:

Python
1
2
3
insurance = Good(8000, name='insurance')
all_other = Good(1, name='all other goods')
new_budget = Budget(insurance, all_other, income=my_person.income, name='new_budget')

Plotting this new budget, we see that the line tilts inward, since the person can only afford half as much insurance as before:

The first stage in Slutsky decomposition involves calculating the substitution effect. This is done by tilting the budget line to the slope of the new prices, but with income adjusted so that the person can still afford their old bundle. We then determine the new optimal bundle at this budget (denoted ‘substitution budget’) and call it the substitution bundle:

    \[\Delta m = x_1 \Delta p_1\]

1
2
3
sub_income = my_person.income + my_person.optimal_bundle[0] * 4000
substitution_budget = Budget(insurance, all_other, income=sub_income, name='Substitution<br /> Budget')
...more plotting code...

You can see that if the person were given enough money to purchase the same amount of insurance even after the rate increase, they would still reduce their consumption from 11.1 to 8.3 units of insurance. 8.3 – 11.1 = -2.8 is the substitution effect.

Income Effect

Now, to calculate the income effect, we then shift the substitution budget to the position of the new budget:

The person purchases 5.5 units of insurance at the new budget, so the income effect is 5.5 – 8.3 = -2.8 for the substitution effect. The total effect is -2.8 -2.8 = -5.6 units of insurance, the sum of the substitution and income effect. This is the same as the new consumption minus the old consumption 5.5 – 11.1 = -5.6

MIES Integration

The Slutsky decomposition process has been integrated into MIES as a class in econtools/slutsky.py:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import plotly.graph_objects as go
 
from plotly.offline import plot
from econtools.budget import Budget
from econtools.utility import CobbDouglas
 
 
class Slutsky:
    """
    Implementation of the Slutsky equation, accepts two budgets, a utility function, and calculates
    the income and substitution effects
    """
    def __init__(
            self,
            old_budget: Budget,
            new_budget: Budget,
            utility_function: CobbDouglas  # need to replace with utility superclass
    ):
        self.old_budget = old_budget
        self.old_budget.name = 'Old Budget'
        self.new_budget = new_budget
        self.new_budget.name = 'New Budget'
        self.utility = utility_function
 
        self.old_bundle = self.utility.optimal_bundle(
            self.old_budget.good_x.price,
            self.old_budget.good_y.price,
            self.old_budget.income
        )
 
        self.delta_p = self.new_budget.good_x.price - self.old_budget.good_x.price
        self.pivoted_budget = self.calculate_pivoted_budget()
        self.substitution_bundle = self.calculate_substitution_bundle()
        self.substitution_effect = self.calculate_substitution_effect()
        self.new_bundle = self.calculate_new_bundle()
        self.income_effect = self.calculate_income_effect()
        self.total_effect = self.substitution_effect + self.income_effect
        self.substitution_rate = self.calculate_substitution_rate()
        self.income_rate = self.calculate_income_rate()
        self.slutsky_rate = self.substitution_rate - self.income_rate
        self.plot = self.get_slutsky_plot()
 
    def calculate_pivoted_budget(self):
        """
        Pivot the budget line at the new price so the consumer can still afford their old bundle
        """
        delta_m = self.old_bundle[0] * self.delta_p
        pivoted_income = self.old_budget.income + delta_m
        pivoted_budget = Budget(
            self.new_budget.good_x,
            self.old_budget.good_y,
            pivoted_income,
            'Pivoted Budget'
        )
        return pivoted_budget
 
    def calculate_substitution_bundle(self):
        """
        Return the bundle consumed after pivoting the budget line
        """
        substitution_bundle = self.utility.optimal_bundle(
            self.pivoted_budget.good_x.price,
            self.pivoted_budget.good_y.price,
            self.pivoted_budget.income
        )
        return substitution_bundle
 
    def calculate_substitution_effect(self):
        substitution_effect = self.substitution_bundle[0] - self.old_bundle[0]
        return substitution_effect
 
    def calculate_new_bundle(self):
        """
        Shift the budget line outward
        """
        new_bundle = self.utility.optimal_bundle(
            self.new_budget.good_x.price,
            self.new_budget.good_y.price,
            self.new_budget.income
        )
        return new_bundle
 
    def calculate_income_effect(self):
        income_effect = self.new_bundle[0] - self.substitution_bundle[0]
        return income_effect
 
    def calculate_substitution_rate(self):
        delta_s = self.calculate_substitution_effect()
        delta_p = self.new_budget.good_x.price - self.old_budget.good_x.price
        substitution_rate = delta_s / delta_p
        return substitution_rate
 
    def calculate_income_rate(self):
        delta_p = self.new_budget.good_x.price - self.old_budget.good_x.price
        delta_m = self.old_bundle[0] * delta_p
        delta_x1m = -self.calculate_income_effect()
        income_rate = delta_x1m / delta_m * self.old_bundle[0]
        return income_rate
 
    def get_slutsky_plot(self):
        max_x_int = max(
            self.old_budget.income / self.old_budget.good_x.price,
            self.pivoted_budget.income / self.pivoted_budget.good_x.price,
            self.new_budget.income / self.new_budget.good_x.price
        ) * 1.2
 
        max_y_int = max(
            self.old_budget.income,
            self.pivoted_budget.income,
            self.new_budget.income,
        ) * 1.2
 
        # interval boundaries
        effect_boundaries = [
            self.new_bundle[0],
            self.substitution_bundle[0],
            self.old_bundle[0]
        ]
        effect_boundaries.sort()
 
        fig = go.Figure()
 
        # budget lines
        fig.add_trace(self.old_budget.get_line())
        fig.add_trace(self.pivoted_budget.get_line())
        fig.add_trace(self.new_budget.get_line())
 
        # utility curves
        fig.add_trace(
            self.utility.trace(
                k=self.old_bundle[2],
                m=max_x_int,
                name='Old Utility'
            )
        )
        fig.add_trace(
            self.utility.trace(
                k=self.substitution_bundle[2],
                m=max_x_int,
                name='Pivoted Utility'
            )
        )
        fig.add_trace(
            self.utility.trace(
                k=self.new_bundle[2],
                m=max_x_int,
                name='New Utility'
            )
        )
        # consumption bundles
 
        fig.add_trace(
            go.Scatter(
                x=[self.old_bundle[0]],
                y=[self.old_bundle[1]],
                mode='markers+text',
                text=['Old Bundle'],
                textposition='top center',
                marker=dict(
                    size=[15],
                    color=[1]
                ),
                showlegend=False
            )
        )
 
        fig.add_trace(
            go.Scatter(
                x=[self.substitution_bundle[0]],
                y=[self.substitution_bundle[1]],
                mode='markers+text',
                text=['Pivoted Bundle'],
                textposition='top center',
                marker=dict(
                    size=[15],
                    color=[2]
                ),
                showlegend=False
            )
        )
 
        fig.add_trace(
            go.Scatter(
                x=[self.new_bundle[0]],
                y=[self.new_bundle[1]],
                mode='markers+text',
                text=['New Bundle'],
                textposition='top center',
                marker=dict(
                    size=[15],
                    color=[3]
                ),
                showlegend=False
            )
        )
        # Substitution and income effect interval lines
        fig.add_shape(
            type='line',
            x0=self.substitution_bundle[0],
            y0=self.substitution_bundle[1],
            x1=self.substitution_bundle[0],
            y1=0,
            line=dict(
                color="grey",
                dash="dashdot",
                width=1
            )
        )
 
        fig.add_shape(
            type='line',
            x0=self.new_bundle[0],
            y0=self.new_bundle[1],
            x1=self.new_bundle[0],
            y1=0,
            line=dict(
                color="grey",
                dash="dashdot",
                width=1
            )
        )
 
        fig.add_shape(
            type='line',
            x0=self.old_bundle[0],
            y0=self.old_bundle[1],
            x1=self.old_bundle[0],
            y1=0,
            line=dict(
                color="grey",
                dash="dashdot",
                width=1
            )
        )
        fig.add_shape(
            type='line',
            xref='x',
            yref='y',
            x0=effect_boundaries[0],
            y0=max_y_int / 10,
            x1=effect_boundaries[1],
            y1=max_y_int / 10,
            line=dict(
                color='grey',
                dash='dashdot'
            )
        )
        fig.add_shape(
            type='line',
            xref='x',
            yref='y',
            x0=effect_boundaries[1],
            y0=max_y_int / 15,
            x1=effect_boundaries[2],
            y1=max_y_int / 15,
            line=dict(
                color='grey',
                dash='dashdot'
            )
        )
        fig.add_shape(
            type='line',
            xref='x',
            yref='y',
            x0=effect_boundaries[0],
            y0=max_y_int / 20,
            x1=effect_boundaries[2],
            y1=max_y_int / 20,
            line=dict(
                color='grey',
                dash='dashdot'
            )
        )
 
        fig.add_annotation(
            x=(self.substitution_bundle[0] + self.old_bundle[0]) / 2,
            y=max_y_int / 10,
            text='Substitution<br />Effect',
            xref='x',
            yref='y',
            showarrow=True,
            arrowhead=7,
            ax=5,
            ay=-40,
        )
 
        fig.add_annotation(
            x=(self.new_bundle[0] + self.substitution_bundle[0]) / 2,
            y=max_y_int / 15,
            text='Income Effect',
            xref='x',
            yref='y',
            showarrow=True,
            arrowhead=7,
            ax=50,
            ay=-20
        )
 
        fig.add_annotation(
            x=(effect_boundaries[2] + effect_boundaries[0]) / 2,
            y=max_y_int / 20,
            text='Total Effect',
            xref='x',
            yref='y',
            showarrow=True,
            arrowhead=7,
            ax=100,
            ay=20
        )
 
        fig['layout'].update({
            'title': 'Slutsky Decomposition',
            'title_x': 0.5,
            'xaxis': {
                'title': 'Amount of Insurance',
                'range': [0, max_x_int]
            },
            'yaxis': {
                'title': 'Amount of All Other Goods',
                'range': [0, max_y_int]
            }
        })
        return fig
 
    def show_plot(self):
        plot(self.plot)

This has been added to the Person class, so we can use its methods to get the substitution and income effects. This conveniently packages all the manual steps we took above together:

Python
1
2
3
my_person.calculate_slutsky(new_budget)
my_person.slutsky.income_effect
my_person.slutsky.substitution_effect

Which returns -2.8 for each effect, the same as above.

Hicks Decomposition

A similar decomposition method is called Hicks decomposition. Instead of pivoting the budget constraint so that the person can afford the same bundle as before, the budget constraint is shifted so that they have the same utility as before. Using algebra, we can solve this by fixing utility:

    \[m^\prime = \frac{\bar{u}}{\left(\frac{c}{c +d}\frac{1}{p_1^\prime}\right)^c\left(\frac{d}{c+d}\frac{1}{p_2}\right)^d}\]

where m^\prime is the adjusted income, and p_1^\prime is the new premium, and \bar{u} is the utility fixed at the original level.

You’ll notice there’s a subtle difference, the new bundle is the same as in the Slutsky case, but the substitution bundle in this case is on the original utility curve. This gives different answers for the substitution and income effects, which are -3.3 and -2.3, which add up to a total effect of -5.6, as before.

The code for the Hicks class is much the same as that for the Slutsky class, so I won’t post most of it here, the relevant change is in calculating the substitution budget:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Hicks:
...
 
    def calculate_pivoted_budget(self):
        """
        Pivot the budget line at the new price so the consumer still as the same utility
        """
        old_utility = self.old_bundle[2]
        c = self.utility.c
        d = self.utility.d
        p1_p = self.new_budget.good_x.price
        p2 = self.old_budget.good_y.price
        x1_no_m = (((c / (c + d)) * (1 / p1_p)) ** c)
        x2_no_m = (((d / (c + d)) * (1 / p2)) ** d)
        pivoted_income = old_utility / (x1_no_m * x2_no_m)
        pivoted_budget = Budget(
            self.new_budget.good_x,
            self.old_budget.good_y,
            pivoted_income,
            'Pivoted Budget'
        )
        return pivoted_budget
        ...

Further Improvements

Since Hicks substitution is mostly similar to Slutsky in terms of code, it makes sense for the Hicks class to inherit from the Slutsky class or for both of them to inherit from a superclass.

I’m currently working on implementing wealth into MIES, since as of today, none of the transactions actually impact wealth.

Posted in: Actuarial, Mathematics, MIES / Tagged: actuarial, insurance, MIES, simulator

No. 139: MIES – Schema Changes and Claims Reporting

21 June, 2020 4:13 PM / Leave a Comment / Gene Dan

This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

When programming MIES, I face a trade-off between rolling out enough features for a weekly blog post and spending more time trying to learn Python in order to code them in the most elegant way possible. If I implement things too quickly, I face the problem of accumulating bugs and technical debt, but if I spend too much time trying learn the latest libraries, I’d never get anything done. Therefore, I’ve decided to just write what I can most weeks, but revisiting the code to make it better every 3rd or 4th week, so I can implement any new technical knowledge I’d gained during that time.

Last month, I demonstrated the phenomenon of adverse selection using MIES. However, the underlying database was not a realistic depiction of the real world:

There was only one database, shared by all entities involved in the simulation – firms, people, and the environment. In business, it’s more realistic for companies to have their own internal databases, without the ability to access any other company’s database. I’ve reached point where I’ve decided that it would be difficult to add insurance operations, specifically the reporting of claims, if all entities used the same database. Therefore, I’ve decided to spend time this week setting up separate schemas for each company.

The reason why I didn’t do this earlier is because I hadn’t gone far enough in the SQLAlchemy documentation to figure out how to establish multiple metadata bases to allow each company in the simulation to access its own database. The decision I was facing last month was to either write the adverse selection demo with the knowledge I had, or to keep reading further to set things up the right way and then write about how I built nothing, but read some documentation in the hope that I’d build something later. I’d gotten tired of doing the latter one too many times, so I decided to just go for it.

This week, I was confident that I’d be able to fix the single-schema problem and add a claims reporting facility as well, so that’s what I’ll go over today.

Splitting the Database

Splitting the database involved two separate challenges:

  1. Defining the schema for each entity
  2. Rewriting the code to accept the new backend structure

This second challenge was the main motivation for updating the schema now rather than later. The more features I added to MIES, the more of them I would have to rewrite when I inevitably split the database.

First, I envisioned the database structure I wanted for each firm:

Much of this was taken from the original schema, as seen at the top of this post. The policy table contains the same information as before, minus the company id. This is because a company does not need to have this field if all of its policies belong to itself.

The customer table is new. Here, I faced the challenge of whether I wanted to maintain data integrity between the information a company knows about its own customers, and their actual attributes as they exist outside the knowledge of the firm. For example, if a person switches insurers and then changes their profession, should the original insurer know about it?

In the real world, the answer is no. This also applies to things like credit scores which can change after the company does an initial credit check. Therefore, I’ve decided to discard data integrity between companies and the environment. I may want to rethink whether I want the all-knowing environment class to at least have a canonical record of all the information in the simulation (the answer is usually yes when I write these thoughts out in a blog post).

The customer table is analogous to the person table as before, but only contains information that the firm knows about each customer. This information typically costs money to acquire when quoting policies, and is considered an underwriting expense that I will need to add later.

Lastly, I’ve added a new table for claims. I mentioned last month that since we assumed each loss was fully covered, there was no need to distinguish between losses and claims. Now that we’re facing the challenge of assigning a losses to different companies as claims, I decided to lay the groundwork now so that we can loosen this assumption when we need to. Gradually, we will see the what the differences is between a loss and a claim. A loss is a fortuitous event that happens to a person, and an insurance claim is a financial claim that a person makes against their insurer for indemnification under their policy. There is also a distinction between the loss a person endures and the loss that a company needs to pay, due to things like coverage exclusions, limits, and deductibles. The claim table will take care of many of these distinctions.

Therefore, in a two-firm simulation, we will have a database for each firm. Below, we have two ER-diagrams side-by-side for each company:

This idea carries over to the case of an n-firm simulation, where we’ll have n databases. The code that defines the firm schema now resides in a new module:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, Date, Float, String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
 
 
Base = declarative_base()
 
 
class Customer(Base):
    __tablename__ = 'customer'
 
    person_id = Column(
        Integer,
        primary_key=True
    )
    age_class = Column(String)
    profession = Column(String)
    health_status = Column(String)
    education_level = Column(String)
 
    policy = relationship(
        "Policy",
        back_populates="customer"
    )
 
    def __repr__(self):
        return "<Customer(" \
               "age_class='%s', " \
               "profession='%s', " \
               "health_status='%s', " \
               "education_level='%s'" \
               ")>" % (
                   self.age_class,
                   self.profession,
                   self.health_status,
                   self.education_level,
               )
 
 
class Policy(Base):
    __tablename__ = 'policy'
 
    policy_id = Column(
        Integer,
        primary_key=True
    )
    person_id = Column(
        Integer,
        ForeignKey('customer.person_id')
    )
    effective_date = Column(Date)
    expiration_date = Column(Date)
    premium = Column(Float)
 
    customer = relationship(
        "Customer",
        back_populates="policy"
    )
 
    def __repr__(self):
        return "<Policy(person_id ='%s'," \
               "effective_date ='%s', " \
               "expiration_date='%s', " \
               "premium='%s')>" % (
                self.person_id,
                self.effective_date,
                self.expiration_date,
                self.premium
                )
 
 
class Claim(Base):
    __tablename__ = 'claim'
 
    claim_id = Column(
        Integer,
        primary_key=True
    )
    policy_id = Column(
        Integer,
        ForeignKey('policy.policy_id')
    )
    person_id = Column(Integer)
    event_id = Column(Integer)
    occurrence_date = Column(Date)
    report_date = Column(Date)
    incurred_loss = Column(Float)
 
    def __repr__(self):
        return "<Claim(policy_id ='%s'," \
               "person_id ='%s', " \
               "event_id='%s', " \
               "occurrence_date='%s'," \
               "report_date='%s'," \
               "incurred_loss='%s')>" % (
                self.policy_id,
                self.person_id,
                self.event_id,
                self.occurence_date,
                self.report_date,
                self.incurred_loss
                )

There is also a schema for the environment, which is similar to before but minus the policy-specific information:

Query Encapsulation

MIES relies on querying its databases to run the simulations. Up until now, many of these queries resided within the environment, broker, and insurer classes. The tricky thing about querying databases is that you should close the connections to them once you no longer need them. However, establishing and closing a database requires a few lines of code, and the queries themselves can be verbose as well. This can get repetitive and can lead to bugs if I forget to close a connection or make modifications to reused queries.

Therefore, I thought it would be a good idea to encapsulate them into functions. In order to do this, I created two modules in a folder called utilities that are used to connect to and then query the databases, respectively. For example, the connections file contains code to connect to either the universe (environment) database or the database for a particular company:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import sqlalchemy as sa
from sqlalchemy.orm import sessionmaker
import schema.universe as universe
 
 
def connect_universe():
    engine = sa.create_engine(
        'sqlite:///db/universe.db',
        echo=True
    )
    session = sessionmaker(bind=engine)()
    connection = engine.connect()
    return session, connection
 
 
def connect_company(company_name):
    engine = sa.create_engine(
        'sqlite:///db/companies/' + company_name + '.db',
        echo=True)
    session = sessionmaker(bind=engine)()
    connection = engine.connect()
    return session, connection

You can see that you need to import some things, and also define an engine, session, and connection. That’s quite a bit of code that I don’t want to repeat every time I need to access a database.

Moving onto the queries, we likewise have code that we don’t want to repeat. For example, the query_population() function in the queries file returns the PersonTable from the environment schema as a dataframe:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import pandas as pd
 
from schema.universe import Company, PersonTable
from schema.insco import Customer, Policy
from utilities.connections import (
    connect_universe,
    connect_company)
 
def query_population():
    session, connection = connect_universe()
    query = session.query(PersonTable).statement
    population = pd.read_sql(query, connection)
    connection.close()
    return population

Now, rather than calling all the code that we see within these functions, we can just get the information in one line, that is, query_population(). Other queries within the file access other parts of the database and return information we might want to ask about frequently:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def query_company():
    session, connection = connect_universe()
    companies_query = session.query(Company).statement
    companies = pd.read_sql(
        companies_query,
        connection
    )
    connection.close()
    return companies
 
 
def query_all_policies():
    companies = query_company()
    policies = pd.DataFrame()
 
    for index, row in companies.iterrows():
        company_id = row['company_id']
        company_name = row['company_name']
        session, connection = connect_company(company_name)
        query = session.query(Policy).statement
        policy_c = pd.read_sql(
            query,
            connection
        )
        policy_c['company_id'] = company_id
        policy_c['company_name'] = company_name
        policies = policies.append(policy_c)
        connection.close()
 
    return policies
 
 
def query_in_force_policies(curr_date):
    companies = get_company_names()
    in_force = pd.DataFrame()
 
    for company in companies:
        session, connection = connect_company(company)
 
        exp_query = session.query(
            Policy
        ).filter(
            Policy.expiration_date == curr_date
        ).statement
 
        company_in_force = pd.read_sql(
            exp_query,
            connection)
 
        in_force = in_force.append(
            company_in_force,
            ignore_index=True
        )
 
        connection.close()
    return in_force
 
 
def get_company_names():
    session, connection = connect_universe()
    companies_query = session.query(Company.company_name).statement
    companies = pd.read_sql(
        companies_query,
        connection
    )
    connection.close()
    return list(companies['company_name'])
 
 
def get_company_ids():
    session, connection = connect_universe()
    companies_query = session.query(Company.company_id).statement
    companies = pd.read_sql(companies_query, connection)
    connection.close()
    return list(companies['company_id'])
 
 
def get_uninsured_ids(curr_date):
    population = query_population()
    in_force = query_in_force_policies(curr_date)
    uninsureds = population[~population['person_id'].isin(in_force['person_id'])]['person_id']
    return uninsureds
 
 
def get_customer_ids(company):
    session, connection = connect_company(company)
    id_query = session.query(Customer.person_id).statement
    ids = pd.read_sql(id_query, connection)
    return ids

Claims Reporting

If you looked carefully, you may have noticed an additional date field added since last month. In addition to the event date, synonymous with occurrence date, we now have the report date – that is, the date the claim is reported to the insurer. This distinction has important implications in actuarial science, since different types of policies exist that may only offer coverage on claims that either occur during or are reported during the period the policy is in effect.

For now, I have assumed that all policies are written on an occurrence basis, which means that a policy covers all claims that occur within the coverage period. This means that even if an insured reports a claim several years after is has occurred and can prove that its valid and occurred during the policy period, it is still covered under the terms of the policy.

I decided to add the claims reporting facility as a method in the broker class, which now resembles more of a place where transactions happen than an actual brokerage:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    def report_claims(self, report_date):
        # match events to policies in which they are covered
        session, connection = connect_universe()
 
        event_query = session.query(Event).\
            filter(Event.report_date == report_date).\
            statement
 
        events = pd.read_sql(event_query, connection)
        connection.close()
 
        policies = query_all_policies()
        claims = events.merge(
            policies,
            on='person_id',
            how='left'
        )
        claims = claims.query(
            'event_date >= effective_date '
            'and event_date <= expiration_date'
        )
 
        claims = claims.drop([
            'effective_date',
            'expiration_date',
            'premium',
            'company_id'
        ], axis=1)
 
        companies = get_company_names()
        for company in companies:
            reported_claims = claims[claims['company_name'] == company]
 
            reported_claims = reported_claims.rename(columns={
                'event_date': 'occurrence_date',
                'ground_up_loss': 'incurred_loss'
            })
 
            reported_claims = reported_claims.drop(['company_name'], axis=1)
 
            session, connection = connect_company(company)
            reported_claims.to_sql(
                'claim',
                connection,
                index=False,
                if_exists='append'
            )
            connection.close()

This function takes the report date as an argument, and then combs through both the event table from the environment and the policy table from each company to match the event to the appropriate company and policy, and then populate that company’s claim table.

The actual claims cycle is much more complex, involving adjusters, claimants, lawyers, agents, and other parties. These have been abstracted away for now, but I plan to add more detail later since claims modeling is itself an important part of an insurer’s strategy.

I’ve also made many changes to the other classes, but I wanted to highlight claims reporting since it’s a new feature. You can examine the other changes on GitHub.

Simulation

By encapsulating the queries, I’ve removed the number of arguments and lines of code needed to run the simulations. For example, we can now define an Insurer with just two arguments:

Python
1
2
3
company_1 = Insurer(4000000, 'company_1')
 
company_2 = Insurer(4000000, 'company_2')

Whereas previously, it took five aguments:

Python
1
2
3
company_1 = Insurer(gsession, engine, 4000000, Company, 'company_1')
 
company_2 = Insurer(gsession, engine, 4000000, Company, 'company_2')

The need to specify the connection, engine, and table was cumbersome and is now handled automatically by the Insurer class.

Finally, I tested out how the data flows from policy issuance to claims occurrence, and then to renewals, and MIES is still able to demonstrate the phenomenon of adverse selection:

Further Improvements

I’d like to get back to the subject of economics next week, so now I’m working on implementing the Slutsky Equation, which decomposes the motivations a consumer might have for changing their consumption as prices change.

Posted in: Actuarial, Mathematics, MIES

No. 138: MIES – Offer, Engel, and Personal Demand Curves

14 June, 2020 10:11 PM / Leave a Comment / Gene Dan


This entry is part of a series dedicated to MIES – a miniature insurance economic simulator. The source code for the project is available on GitHub.

Current Status

Last week, I specified a Cobb Douglas utility curve for each person in MIES. I also demonstrated a situation in which a person might choose to not fully insure. However, I’ve gone a few chapters ahead in my readings and found out that under certain assumptions, a risk-averse person who is offered a fair premium will choose to fully insure. In MIES, since each company charges the pure premium without loading for profit or expenses, each person is getting a fair premium – so there’s something missing from my current model that makes it inconsistent with economic theory.

Risk aversion is not yet implemented in MIES, and will have to wait a few weeks before I get to it, since there’s quite a bit of work to do. But I’m mentioning the issue here, just in case someone reading this knows more about the subject than I do.

This week, I’m going to demonstrate a set of tools to examine consumer choice – the offer, Engel, and personal demand curves. I don’t recall using the first two curves very much in my economics courses, but the latter will be very important and will serve as a bridge between personal demand and market demand. Surprisingly, these curves were very quick to implement, since they all rely on the same method I wrote last week for the Cobb Douglas class.

The topic of this post roughly corresponds to chapter 6 of Varian.

Offer Curve

The offer curve for a consumer depicts their optimal consumption bundle at each level of income. Since the offer curve is unique to a particular consumer, I decided to define the methods that generate and plot the offer curve within the Person class. Luckily, the CobbDouglas class that I defined last week has a method called optimal_bundle, which returns the optimal consumption bundle given a set of prices and income. Since this is exactly what we need given the definition of the offer curve, we can simply use this method to generate each person’s offer curve:

Python
1
2
3
4
5
6
7
8
9
10
    def get_offer(self):
        # only works for Cobb Douglas right now
        def o(m):
            return self.utility.optimal_bundle(
                p1=self.premium,
                p2=1,
                m=m
            )
 
        self.offer = o

Note that while I only have one utility curve defined in MIES at the moment (Cobb Douglas), the definition of the offer curve doesn’t need to have anything specific to the Cobb Douglas utility function. This means in the future, I should be able to abstract this method to accept other utility functions without too much modification.

I’ve also added a method to plot a person’s offer curve:

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
    def show_offer(self):
        offer_frame = pd.DataFrame(columns=['income'])
        offer_frame['income'] = np.arange(0, self.income * 2, 1000)
        offer_frame['x1'], offer_frame['x2'] = self.offer(offer_frame['income'])[:2]
 
        offer_trace = {
            'x': offer_frame['x1'],
            'y': offer_frame['x2'],
            'mode': 'lines',
            'name': 'Offer Curve'
        }
 
        fig = self.consumption_figure
        fig.add_trace(offer_trace)
        plot(fig)

This method takes a preset range of income values, and uses the get_offer method to plot the optimal consumption bundle for each income value in the range. For example if we’ve already run a few iterations of a market simulation, we can examine what combinations of insurance and non-insurance a person can afford at different income levels. Let’s do this for the person with id=1:

1
2
3
4
5
6
7
8
my_person = Person(session=gsession, engine=engine, person=PersonTable, person_id=1)
my_person.get_policy(Policy, 1001)
 
my_person.get_budget()
my_person.get_consumption()
my_person.get_consumption_figure()
my_person.get_offer()
my_person.show_offer()

Imagine what would happen if you were to shift the blue budget line inward and outward. The optimal consumption bundle would the the point of tangency with the corresponding utility function. We can see that the orange offer curve is the set of all these points.

Engel Curve

The Engel curve is similar to the offer curve, but plots the optimal choice of a good at various levels of income. Its definition within the Person class is also similar, except we only need to return the first good of the optimal bundle:

Python
1
2
3
4
5
6
7
8
9
10
11
    def get_engel(self):
        # only works for Cobb Douglas right now
 
        def e(m):
            return self.utility.optimal_bundle(
                p1=self.premium,
                p2=1,
                m=m
            )[0]
 
        self.engel = e

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    def show_engel(self):
        engel_frame = pd.DataFrame(columns=['income'])
        engel_frame['income'] = np.arange(0, self.income * 2, 1000)
        engel_frame['x1'] = engel_frame['income'].apply(self.engel)
 
        engel_trace = {
            'x': engel_frame['x1'],
            'y': engel_frame['income'],
            'mode': 'lines',
            'name': 'Engel Curve'
        }
 
        fig = go.Figure()
        fig.add_trace(engel_trace)
 
        fig['layout'].update({
            'title': 'Engel Curve for Person ' + str(self.id),
            'title_x': 0.5,
            'xaxis': {
                'title': 'Amount of Insurance'
            },
            'yaxis': {
                'title': 'Income'
            }
        })
 
        plot(fig)

Let’s see what the Engel curve looks like for person 1:

1
2
3
4
5
6
7
8
9
my_person = Person(session=gsession, engine=engine, person=PersonTable, person_id=1)
my_person.get_policy(Policy, 1001)
my_person.premium
my_person.get_budget()
my_person.get_consumption()
my_person.get_consumption_figure()
 
my_person.get_engel()
my_person.show_engel()

Demand Curve

The demand function depicts how much of a good a person would buy if it were at a certain price. This one’s important since we’ll need it to derive industry demand, which will then be used to answer many fundamental questions about the insurance market. Like the other curves, defining this one was simple, we just get the optimal bundle at each price and return the quantity demanded of the first good:

Python
1
2
3
4
5
6
7
8
9
10
11
    def get_demand(self):
        # only works for Cobb Douglas right now
 
        def d(p):
            return self.utility.optimal_bundle(
                p1=p,
                p2=1,
                m=self.income
            )[0]
 
        self.demand = d

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    def show_demand(self):
        demand_frame = pd.DataFrame(columns=['price'])
        demand_frame['price'] = np.arange(self.premium/100, self.premium * 2, self.premium/100)
        demand_frame['x1'] = demand_frame['price'].apply(self.demand)
 
        demand_trace = {
            'x': demand_frame['x1'],
            'y': demand_frame['price'],
            'mode': 'lines',
            'name': 'Demand Curve'
        }
 
        fig = go.Figure()
        fig.add_trace(demand_trace)
 
        fig['layout'].update({
            'title': 'Demand Curve for Person ' + str(self.id),
            'title_x': 0.5,
            'xaxis': {
                'range': [0, self.income / self.premium * 2],
                'title': 'Amount of Insurance'
            },
            'yaxis': {
                'title': 'Premium'
            }
        })
 
        plot(fig)

Let’s see what the demand curve looks like for person 1:

1
2
3
4
5
6
7
8
9
10
my_person = Person(session=gsession, engine=engine, person=PersonTable, person_id=1)
my_person.get_policy(Policy, 1001)
my_person.premium
my_person.get_budget()
my_person.get_consumption()
my_person.get_consumption_figure()
my_person.get_offer()
 
my_person.get_demand()
my_person.show_demand()

Note that the demand curve slopes downward as it should, since we’d expect a person to buy more insurance the cheaper it is. However, note that there is no price such that the demand equals zero. The demand curve asymptotically approaches zero as the premium increases, but this particular person will never go uninsured. This is due the property of the Cobb Douglas utility function that the exponent of the good equals the percent of income spent on that good, which is hard coded as 10% at the moment. However, in the real world people do go uninsured, and this is a subject of great interest to me, so we’ll need to revisit this later.

Further Improvements

I’ve added quite a few features to the person class, but I haven’t integrated them to the point where I can perform more than two market simulations. I’m also several chapters ahead in my readings than what I’ve posted about, and I’ve encountered an interesting demonstration on risk aversion and intertemporal choice concerning assets, which will take quite an effort to both implement and reconcile with what I’ve written so far.

Posted in: Actuarial, Mathematics, MIES

Post Navigation

« Previous 1 2 3 4 5 … 30 Next »

Archives

  • September 2023
  • February 2023
  • January 2023
  • October 2022
  • March 2022
  • February 2022
  • December 2021
  • July 2020
  • June 2020
  • May 2020
  • May 2019
  • April 2019
  • November 2018
  • September 2018
  • August 2018
  • December 2017
  • July 2017
  • March 2017
  • November 2016
  • December 2014
  • November 2014
  • October 2014
  • August 2014
  • July 2014
  • June 2014
  • February 2014
  • December 2013
  • October 2013
  • August 2013
  • July 2013
  • June 2013
  • March 2013
  • January 2013
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • January 2011
  • December 2010
  • October 2010
  • September 2010
  • August 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • September 2009
  • August 2009
  • May 2009
  • December 2008

Categories

  • Actuarial
  • Cycling
  • Logs
  • Mathematics
  • MIES
  • Music
  • Uncategorized

Links

Cyclingnews
Jason Lee
Knitted Together
Megan Turley
Shama Cycles
Shama Cycles Blog
South Central Collegiate Cycling Conference
Texas Bicycle Racing Association
Texbiker.net
Tiffany Chan
USA Cycling
VeloNews

Texas Cycling

Cameron Lindsay
Jacob Dodson
Ken Day
Texas Cycling
Texas Cycling Blog
Whitney Schultz
© Copyright 2025 - Gene Dan's Blog
Infinity Theme by DesignCoral / WordPress